期刊文献+

元素随机排列的傅里叶测量矩阵构造方法

Construction of Fourier Measurement Matrix with Random Element Permutation
下载PDF
导出
摘要 针对压缩感知理论在超宽带信号低速采样的应用过程中,现有测量矩阵随机变元多、重构效果有待进一步提高的问题,结合傅里叶矩阵和托普利兹矩阵的构造特点,提出元素随机排列的傅里叶测量矩阵构造方法。该方法先以各元素服从正态分布的方式随机生成一行向量并对其进行傅里叶变换,再通过随机排列变换后向量元素的方法生成矩阵各行从而得到随机傅里叶测量矩阵。仿真实验表明,使用该测量矩阵在同等条件下相比于高斯、伯努利等随机矩阵,信号具有更好的重构效果。同时,该测量矩阵比高斯随机矩阵拥有更少的随机变元数目。 In this paper,with the combination of the structural features of the Fourier matrices and Toeplitz ma-trix,we proposed the Fourier measurement matrix with random permutation to reduce the number of random variables as long as improved the reconstruction performance for low rate UWB signal sampling with compressed sensing.We first randomly generated a row vector whose entries comply with the norm distribution,then we randomly permuted the entries of a new vector,which was the output of the fast Fourier transform of the vector we mentioned before,to achieve different row vectors to form the measurement matrix.Simulation results showed that under the same condition,the signal had a better reconstruction performance using the proposed measurement matrix rather than Gaussian/Bernoulli random matrix.Besides,compared with Gaussian random measurement matrix,the proposed method effectively reduced the number of random variables.
出处 《探测与控制学报》 CSCD 北大核心 2014年第2期59-63,共5页 Journal of Detection & Control
基金 国家自然基金资助(61171170) 安徽省自然基金资助(1308085qfqq)
关键词 压缩感知 测量矩阵 超宽带 仿真 compressed sensing, measurement matrix, UWB, simulation
  • 相关文献

参考文献13

  • 1葛利嘉,曾凡鑫,刘郁林,岳光荣.超宽带无线通信[M].北京:国防工业出版社,2006.
  • 2Donoho D L.Compressed sensing[J].IEEE Trans.Inf.Theory,2006,52(4):1289-1306.
  • 3PAREDES J L,ARCE G R,WANG Zhongmin.Ultra-wideband compressed sensing.,channel estimation [J].IEEE Journal of Selected Topics in Signal Processing,2007,1(3):383-395.
  • 4张先玉,刘郁林,王开.超宽带通信压缩感知信道估计与信号检测方法[J].西安交通大学学报,2010,44(2):88-91. 被引量:19
  • 5Emmanuel Candes,Justin Romberg,Terence Tao.Ro-bust uncertainty principles:exact signal reconstruction from highly incomplete frequency information [J].IEEE Transactions on Inform-ation Theory,2006,52(2),489-509.
  • 6Rauhut H.Circulant and Toeplitz matrices in compressed sensing[J].arXiv preprint arXiv:0902.4394,2009.
  • 7Hjwa w u,Haupt J D,Raz G M,et al.Toeplitz-strue-tured compressed sensing matrices[C]//Statistical Signal Processing.IEEE/SP 14th Workshop on.IEEE,2007:294 298.
  • 8Candes E,Romberg J.Sparsity and incoherence in com-pressive sampling[J].Inverse problems,2007,23(3):969.
  • 9Cand's E J,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly in-complete frequency information[J].Information Theory,IEEE Transactions on,2006,52(2):489-509.
  • 10Cand's E J.The restricted isometry property and its implications for compressed sensing[J].Comptes Ren-dus Mathematique,2008,346(9):589-592.

二级参考文献56

  • 1BENEDETTO M D, KAISER T, MOLISH A F , et al. UWB communication systems: a comprehensive overview[M].New York, USA: Hindawi Publishing Corporation, 2006.
  • 2QIU R C, SCHOLTZ R A, SHEN X. Guest editorial special section on ultra-wideband wireless communications: a new horizon[J]. IEEE Trans on Veh Teehnol, 2005, 54(5) : 1525-1527.
  • 3BLAZQUEZ R, LEE F S, WENTZLOFF D D, et al. Digital architecture for an ultra-wideband radio receiver [C]//Proeeedings of IEEE VTC. Piscataway, NJ, USA: IEEE, 2003:1303-1307.
  • 4BARANIUK R. Compressive sensing [C]// Proceedings of Annual Conference on Information Sciences and Systems. Piscataway, NJ, USA: IEEE, 2008:1289-1306.
  • 5PAREDES J L, ARCE G R, WANG Zhongmin. Ultra-wideband compressed sensing: channel estimation [J]. IEEE Journal of Selected Topics in Signal Processing,2007,1(3) :383-395.
  • 6COHEN A, DAHMEN W, DEVORE R. Compressed sensing and best k-term approximation [J]. Journal of the American Mathematical Society, 2009, 22 (1) : 211- 231.
  • 7DONOHO D L. For most large underdetermined systems of equations, the minimal ll-norm near-solution approximates the sparsest near-solution [J]. Communications on Pure and Applied Mathematics, 2006, 59 (7) ; 907-934.
  • 8HAUPT J, NOWAK R. Signal reconstruction from noisy random projections [J].IEEE Trans on Inform Theory, 2006, 52(9): 4036-4048.
  • 9CANDES E J, WAKIN M B. An introduction to compressive sampling [J].IEEE Signal Processing Magazine, 2008, 25(2):21-30.
  • 10BAJWA W U, HAUPT J, RAZ G, et al. Toeplitz- structured compressed sensing matrices[C] // Proceedings of IEEE SSP'07. Piscataway, NJ,USA: IEEE, 2007 : 294-298.

共引文献241

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部