期刊文献+

亚胺及其相关离子在区分赖氨酸和谷氨酰胺残基中的应用 被引量:1

Application of Immonium and Their Related Ions in Differentiation of Lysine and Glutamine Residues
下载PDF
导出
摘要 完全从头测序要求区分肽段中的同量异序氨基酸谷氨酰胺和赖氨酸,而这通常需要借助高分辨质谱。谷氨酰胺和赖氨酸都可以产生m/z 101亚胺离子和m/z 84亚胺相关离子,尽管已知赖氨酸亚胺离子m/z101有时强度较弱,以及m/z84离子可预示赖氨酸的存在,但该特征能否用于区分赖氨酸和谷氨酰胺仍存在争议。本工作以合成肽段和蛋白质胰酶水解肽段为研究体系,利用基质辅助激光解吸电离的高能碰撞诱导解离模式产生的亚胺及其相关离子的相对强度区分这两种氨基酸。结果表明:谷氨酰胺更易产生m/z101离子,而赖氨酸更易产生m/z84和m/z129离子。对于不同时含有赖氨酸和谷氨酰胺的肽段,使用m/z84离子与亚胺离子m/z101的相对强度比值,而非它们的绝对强度,以及m/z101离子的测量值,可以直接判断序列中存在的是赖氨酸还是谷氨酰胺。对于含有谷氨酰胺,并以赖氨酸结尾或含有漏切赖氨酸的肽段,该强度比可为序列中谷氨酰胺的个数和位置提供参考。因此,低质量区提供的亚胺及其相关离子信息有助于区分赖氨酸和谷氨酰胺。 Differentiation of isobaric glutamine (Gin) and lysine (Lys) is needed for complete de novo sequencing and require high resolution mass spectrometry generally. Both Gin and Lys can produce immonium ions at m/z 101 and their related ions at m/z 84. Although it is known that the peak at m/z 101 due to Lys is sometimes weak and abundant ions at m/z 84 is a good indicator of the presence of Lys, whether this feature can be used to discriminate Lys and Gln is still a controversial issue. In this study, investigations were used to distinguish Gln and Lys based on immonium and immonium-related ions produced by matrix-assisted laser desorption ionization tandem time-of flight (MALDI-TOF/TOF) withhigh energy collision induced dissociation (CID). The work focused on a series of synthetic peptides and 184 tryptic peptides. The result shows that Gin is more prone to generate immonium ions at m/z 101comparede to Lys, which generates m/z 84 and m/z 129 ions main- ly. It is the ratios of intensity of m/z 101 ion versus m/z 84, rather than the intensity value of them, can be used to distinguish Gln versus Lys for practical samples for those peptides that containing Lys or Gln, or provide clue for the number and position of Gln for Lys-terminated peptides. Additionally, the mass measurement at m/z 101 is also relevant for distinguishing Lys and Gln. This observation has demonstrated that the usefulness of low mass region information of TOF/TOF spectra in distinguishing isobaric Lys and Gln.
出处 《质谱学报》 EI CAS CSCD 北大核心 2014年第3期256-261,共6页 Journal of Chinese Mass Spectrometry Society
基金 国家自然科学基金(21271131 31070731)资助
关键词 亚胺离子 基质辅助激光解吸电离-串联飞行时间质谱 赖氨酸 谷氨酰胺 同量异序氨基酸 immonium ions matrix-assisted laser desorption ionization tandem time-of flight mass spectrometry lysine glutamine isobaric amino acids
  • 相关文献

参考文献25

  • 1PEVTSOV, FEDULOVA I, MURZAEI H, et al. Performance evaluation of existing de novo se- quencing algorithms [J]. Proteome Research, 2006,5(11):3 018-3 028.
  • 2MENSCHAERG, VANDEKERCKHOV T T M, BAGGERMANG,et al. A hybrid, de novo based, genome-wide database search approach applied to the sea urchin neuropeptidome [J]. J Proteome Res,2010,9(2) :990-996.
  • 3CARPENTIER S C, PANISB, VERTOMMEN A, et al. Proteome analysis of non-model plants: A challenging but powerful approach [J]. Mass Spectrom Rev, 2008,27(4) :354-377.
  • 4STANDING K G. Peptide and protein de novo se- quencing by mass spectrometry[J]. Curr Opin St ru Biol, 2003,13(5) :595-601.
  • 5SAVITSK M M, NIELSEN M L, KJELDSEN F, et al. Proteomics-grade de novo sequencing ap proach[J]. J Proteome Res, 2005,4(6):2 348- 2 354.
  • 6SPENGLER B. De novo sequencing, peptide com- position analysis, and composition-based sequen cing:a new strategy employing accurate mass de- termination by Fourier transform ion cyclotron res onance mass spectrometry[J]. J Am Soc Mass Spectrum, 2004, 15(5) :703-714.
  • 7SEIDLERJ,ZINN N,BOEHM M E,et al. Deno- vo sequencing of peptides by MS/MS[J]. Pro- teomics, 2010,10(4) :634-649.
  • 8HORN D M,ZUBAREV R A, MCLAFFERTY F W. Automated de novo sequencing of proteins by tandem high-resolution mass spectrometry [J]. Proc Natl Acad Sci, 2000,97(19):10 313-10 317.
  • 9HAM B M. Even electron mass spectrometry with biomolecule applications [M]. USA: John Wiley & Sons Inc, 2008.
  • 10CHI H,SUN RX,YANGB,et al. De novo pep- tide sequencing and identification using HCD spectra[J]. J Proteome Res, 2010, 9 (5): 2 713-2 724.

二级参考文献19

  • 1Domon B,Ruedi Aebersold R. Science,2006, 312:212-217.
  • 2Baker M. Nature Methods, 2010, 7(2) : 157-161.
  • 3Kticher T, Superti-Furga G. Nature Methods, 2007, 4(10) : 807-815.
  • 4Christie A L, Hunter L. Mol. Cell. Proteomics, 2006, 5(4) : 573-588.
  • 5ZHANG Ai-Mei, SUN Kun, WANG Rong, XIE Hua, XIE Xi-Hui, SHI You-Qin. Chinese J. Anal. Chem., 2011, 39(12) : 1817-1822.
  • 6Huiming Yan, H M, Wang N, Weinfeld M, Cullen W R, Le X C. Anal. Chem. , 2009, 81(10) : 4144-4152.
  • 7Aebersold R. Nature Methods, 2009, 6(6) : 411-412.
  • 8ZHU Jin-Lei, ZHANG Kai, HE Xi-Wen, ZHANG Yu-Kui. Chinese J. Anal. Chem. , 2010, 38(3) : 434-441.
  • 9Standing K G. Current Opinion in Structural Biology, 2003, 13 (5) : 595-601.
  • 10Marcotte E M. Nature Biotechnology, 2007, 25 (7): 755-757.

共引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部