期刊文献+

CMKP方程及GCMKP_p方程的精确行波解 被引量:2

Exact wave solutions of CMKP equation and GCMKP_p equation
下载PDF
导出
摘要 利用新的不同的辅助函数,通过齐次平衡法和F函数展开法,求得CMKP方程及其广义p次非线性CMKP方程(GCMKPp)新的精确行波解,包括纽结波解、奇异孤立波解和三角函数周期解. By means of new and different auxiliary equation combining homogeneous balance method and F- function expansion method, some new exact wave solutions including kink wave solution, singular solitary wave solution and periodic wave solution of CMKP equation and generalized CMKP equation with p-power of nonlinearity (GCMKPp) have been obtained, respectively.
出处 《广西科技大学学报》 CAS 2014年第2期1-5,12,共6页 Journal of Guangxi University of Science and Technology
基金 广西自然科学基金项目(2011GXNSFA018137)资助
关键词 CMKP方程 GCMKPp方程 孤立波解 CMKP equation GCMKPp equation solitary wave solution
  • 相关文献

参考文献14

  • 1Wang M L,Zhou Y B,Li Z B.Application of a homogeneous balance method to exact solution of nonlinear equation in mathematical physics[J].Phys.Lett.A,1996,216:67-75.
  • 2Wang M L.Solitary wave solutions for variant Boussinesq equations[J].Phys.Lett.A,1995,199:169-172.
  • 3Fan E G.Extended tanh-function method and its applications to nonlinear equations[J].Phys.Lett.A,2000,277:212-218.
  • 4Parkes E J.,Duffy B R.Travelling solitary wave solutions to a compound KdV-Burgers Equation[J].Phys.Lett.A,1997,229:217-220.
  • 5Tam H W.A generalized Leznov lattice:bilinear form,Backlund transformation,an Lax pair[J].Applied Mathematics Letters,2004,17:35-42.
  • 6Hirota R,Hu X B,Tang X Y.A vector potential KdV equation and vector Ito equation:soliton solutions,bilinear Backlund transformations and Lax pairs[J].J.Math.Anal.Appl,2003,288:326-348.
  • 7Liu S K,Fu Z T,Liu S D,Zhou Q.Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations[J].Phys.Lett.A,2001,289:69-74.
  • 8Wang Q,Chen Y,Zhang H Q.A new Jacobi elliptic function rational expansion method and its application to (1 +1)-dimensional dispersive long wave equation[J].Chaos,Solitons and Fractals,2005,23:477-483.
  • 9Dai Z D,Huang J,Jiang M R.Explicit homoclinic tube solutions and chaos for Zakharov system with periodic boundary[J].Phys.Lett.A,2006,352:411--415.
  • 10Dai Z D,Huang J.Homoclinic tubes for the Davey-Stewartson Ⅱ equation with periodic boundary conditions[J].J.Chin.Phys,2005,43:349-356.

二级参考文献12

  • 1何进春,黄念宁.关于KdV方程孤子解的研究[J].应用数学,2007,20(1):145-150. 被引量:6
  • 2谷超豪.孤子理论和它的应用[M].杭州:浙江科技出版社,1990.
  • 3Wang Mingliang.The solitary Wave solutions for variant Boussinesq equations[J].Phys.Leff.A,1995.(199):167-172.
  • 4DAI Z D,et al,Homoclinic tubes for the Davey-Atewartson Ⅱ equaton with periodic boundary conditions[J].Chin.J.Phys.2005,43 (2):349-356.
  • 5Fan Engui.Extended tanh-function method and its application to nonlinear equations[J].Phys.Lett.A,2000,(277):212-218.
  • 6Fan Engui.Soliton solutions for a generalized Hirota satsuna coupled Kdv equation and a coupled MKdV equation[J].Phys.Lett.A,2001,(282):18-22.
  • 7Saadet Erbay.Coupled modified Kadomtsev-Petviashvili equations in dispersive elastic media[J].Non-linear Mechanics.1999,(34):289-297.
  • 8Sirendaoreji,Sunjiong.Auxiliary equation method for solving nonlinear partial differential equations[J].Phys.Lett.A 2003,(309):387-396.
  • 9Sirendaoreji.New exact traveling wave solutions for the Kawahara and modified Kawahara equations[J].Chain,solitons and Fractals,2004,(19):147-150.
  • 10WANG Zheng-Yan,ZHANG Jin-Shun.Explicit Solutions for a New (2+1)-Dimensional Coupled mKdV Equation[J].Communications in Theoretical Physics,2008,49(2):396-400. 被引量:4

共引文献9

同被引文献5

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部