摘要
Magnesium alloy EZ10 (Mg-RE-Zn) was deformed in tension at temperatures from 20 up to 520℃. A rapid decrease of the yield and tensile strength with temperature was observed at temperatures higher than 300 ℃. On the other hand, ductility of sam-ples rapidly increased in the same temperature range. Light microscopy and scanning electron microscopy was used to reveal the rea-son for these behaviours. Intermetallic particles in grain boundaries are responsible for excellent mechanical properties at lower tem-peratures. Diffusional processes occurring at temperatures higher than 300 ℃ significantly influenced the deformation mechanism as well as the fracture character.
Magnesium alloy EZ10 (Mg-RE-Zn) was deformed in tension at temperatures from 20 up to 520℃. A rapid decrease of the yield and tensile strength with temperature was observed at temperatures higher than 300 ℃. On the other hand, ductility of sam-ples rapidly increased in the same temperature range. Light microscopy and scanning electron microscopy was used to reveal the rea-son for these behaviours. Intermetallic particles in grain boundaries are responsible for excellent mechanical properties at lower tem-peratures. Diffusional processes occurring at temperatures higher than 300 ℃ significantly influenced the deformation mechanism as well as the fracture character.
基金
Project supported by the Czech Science Foundation(P204/12/1360)
Slovak Grant Agency for Science(VEGA)(1/0797/12)