期刊文献+

一种改进的基于树形奇偶机的神经网络同步方案

An Improved Scheme for Neural Synchronization Based on Tree Parity Machine
下载PDF
导出
摘要 神经网络通过相互学习达到完全同步来构建密码协议,已经成为当今密码学的重要研究方向。针对神经密码同步过程中通信次数过多的问题,本文利用神经密码应用中的树形奇偶机,在综述神经密码协议研究的基础上,提出对神经网络单元初始权值的选取进行改进的解决方案。仿真实验结果表明,在保证安全性的情况下,本文方案大大加快了同步速度。 Neural network can fully synchronize by learning from each other, because this effect neural synchronization can be used to construct a cryptographic key-exchange protocol, which has become an important research direction in current cryptography. To solve the problem of too many times in neural cryptography synchronization, an improved scheme was proposed by employing Tree Parity Machine (TPM). On the basis of neural cryptographic protocols, the range of initial weights of neural units was appropriately reduced. After the analysis, the simulation results show that in the case of ensuring security, synchronization efficiency is greatly improved by applying new improvement scheme.
出处 《计算机与现代化》 2014年第5期47-51,共5页 Computer and Modernization
基金 国家自然科学基金资助项目(61170249)
关键词 树形奇偶机 神经网络同步 密钥交换 神经密码 tree parity machine neural synchronization key-exchange neural cryptography
  • 相关文献

参考文献19

  • 1Kinzel W, Kanter I. Interacting neural networks and cryp- tography [ J ]. Advances in Solid State Physics, 2002, 42 : 383-391.
  • 2Rosen-Zvi M, Kanter I, Kinzel W. Cryptography based on neural networks-analytical results [ J ]. Journal of Physics A: Mathematical and General, 2002,35(47) :L707-L713.
  • 3Ruttor A, Kinzel W, Shacham L, et al. Neural cryptogra- phy with feedback[ J ]. Physics Reyiew E, 2004,69 (6) : 046110.
  • 4Ruttor A, Kinzel W, Kanter I. Neural cryptography with queries[ J]. Journal Statistical Mechanics:Theory and Ex- periment, 2005( 1 ) :P01009.
  • 5Rosen-Zvi M, Klein E, Kanter I, et al. Mutual learning in a tree parity machine and its application to cryptography [J]. Physical Review E, 2002,66(6) :066135.
  • 6Kinzel W. Theory of Interacting Neural Networks[ DB/OL]. http ://onlinelibrary. wiley, com/doi/10. 1002/3527602755. ch9/summary, 2002-04-02.
  • 7Kinzel W, Kanter I. Disorder generated by interacting neu- ral networks: Application to econophysics and cryptography [ J ]. Journal of Physics A: Mathematical and General, 2003,36(43) :11173-11186.
  • 8Kanter I, Kinzel W, Kanter E. Secure exchange of infor- mation by synchronization of neural networks [ J ]. Euro- physics Letters, 2002,57( 1 ) : 141-147.
  • 9Klimov A, Mityaguine A, Shamir A. Analysis of neural cryp- tography[ J]. Lecture Notes in Computer Science, 2002,2501 : 288-298.
  • 10Shacham L N, Klein E, Mislovaty R, et al. Cooperating attackers in neural cryptography [ J ]. Physics Review E, 2004,69(6) :066137.

二级参考文献15

  • 1Rosen-Zvi M,Klein E,Kanter I,et al.Mutual learning in a tree parity machine and its application to cryptography[J].Physical Re- view E,2002,66(6).
  • 2Mislovaty R, Perchenok Y,Kanter I,et al.Secure key-exchange protocol with an absence of injective functions[J].Phys Rev E, 2002,66(6) : 1-5.
  • 3Kinzel W.Theory of interacting neural networks[Z].2002.
  • 4Kinzel W,Kanter I.Neural cryptography[Z].2002.
  • 5Ruttor A.Neural synchronization and cryptography[D].Bayerische Julius-Maximilians-Universitat Wurzburg, 2007.
  • 6Engel A,Van den Broeck C.Statistical mechanics of learning[M]. Cambridge: Cambridge University Press, 2001 : 50-120.
  • 7Kanter I,Kinzel W,Kanter E.Secure exchange of information by synchronization of neural networks[J].Europhys Letters,2002, 57( 1 ) : 141-147.
  • 8Volkmer M, Wallner S.Tree parity machine rekeying architectures[J]. IEEE Trans on Computers,2005,54(4):421-427.
  • 9Volkmer M ,Wallner S.Lightweight key exchange and stream ci- pher based solely on tree parity machines[C]//ECRYPT Work- shop on RFID and Lightweight Crypto.Graz,Austria:Graz Uni-versity of Technology,2005:102-113.
  • 10Klimov A, Mityaguine A, Shamir A.Analysis of neural cryptog- raphy[C]//LNCS 2501:Proc of the 8th Int Conf on the Theory and Application of Cryptology and Information Security.London:Springer,2002:288-298.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部