期刊文献+

多元函数插值格式的构造方法 被引量:2

Methods of Construction on the Schemes of Multivariate Interpolation
下载PDF
导出
摘要 多元插值是目前计算数学领域的一个热门研究问题,这源于它在多元函数列表、有限元法、工业产品外形设计等实际科研生产中的广泛应用.本文首先介绍了多元插值的基本概念,进而研究了多元插值函数的存在唯一性问题,也就是如何选择结点组才能使多元插值多项式函数惟一存在问题,同时本文给出了多元插值结点组的一些构造方法,如:直线法叠加法、弧线叠加法.本文将这两种构造方法应用到具体的示例中,最后应用本文给出的构造方法,我们用MATLAB软件来分别实现了二元一次、二元二次和二元三次插值,并将它们进行了对比,发现随着插值多项式次数的增加插值效果也越来越好. Multivariate interpolation is one of the hot research problems of computational mathematics,which derives its widespread application in the list,the multiple functions of finite element method,industrial product design,research and production. This paper first introduces the basic concepts of multivariate interpolation,and then studied the existence and uniqueness of multivariate interpolation function,that is how to choose the set of nodes to make the existence and uniqueness of multivariate interpolation polynomial function at the same time, this paper gives some construction methods on set of nodes for multivariate interpolation,such as: linear superposition method,curve superposition method. The application of construction method is given in this paper, we use MATLAB software to realize Linear interpolation,two times three times interpolation and found that along with the increase in the degree of interpolation polynomial interpolation effect is also getting better and better.
出处 《吉林师范大学学报(自然科学版)》 2014年第2期35-39,共5页 Journal of Jilin Normal University:Natural Science Edition
基金 国家自然科学基金项目资助(41171137)
关键词 适定结点组 多元多项式 多元插值 well-posed node set the multivariate polynomial the multivariate interpolation
  • 相关文献

参考文献9

二级参考文献11

  • 1朱平,傅凯新.十字型结点组及R^2上的插值[J].高等学校计算数学学报,1995,17(1):12-20. 被引量:8
  • 2梁学章.二元插值的适定结点组与迭加插值法[J].吉林大学自然科学学报,1979,(1):27-32.
  • 3[3]Gasca M,Maeztu J I.On Lagrange and Hermite Interpolation in Rn[J].Numer Math,1982(39):1-14.
  • 4[4]David Cox,John Little,Donal O'Shea.Ideal,Varieties and Algorithms[M].北京:世界图书出版公司,2004.
  • 5Xiao-Shan Gao,MingLi.Rational quadratic approximation to real algebraic curves[J].Computer Aided Geometric Design,2004,21:805-828.
  • 6王仁宏.数值逼近[M].北京:高等教育出版社,2003.
  • 7Liang Xuezhang, Cui Li hong, Zhang Jielin, Properly Posed Set of Nodes for Bivariate Lagrange Interpolation Along an Algebraic Curve, Analysis Combinatories and Computing [ M ]. Nova Science Publishers INC. American ,2002.
  • 8X. Z. Liang, C. M. Lu and R. Z. Feng, Properly Posed Sets of Nodes for multivariate Lagrange interpolation in c S[ J ]. SIAM, Numer. Anal,2001,39 (2) :578 -595.
  • 9杨路,张景中,侯晓荣,非线性代数方程组与定理的机器证明[M].上海:上海科技出版社,1996.
  • 10姜占伟,韩旭里.隐式二次代数曲线插值[J].计算技术与自动化,2006,25(S2):112-115. 被引量:1

共引文献22

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部