期刊文献+

基于密度的局部离群数据挖掘方法的改进 被引量:30

Improvement of local outliers mining based on density
下载PDF
导出
摘要 针对传统局部离群点检测算法的局限性进行了研究,提出了一种新的有效的离群数据挖掘算法。该算法在寻找数据点的近邻区域时采用了基于影响空间的局部离群点检测(INFLO)中影响空间的概念,然后在计算数据点的离群因子时,根据基于链接的离群点检测(COF)中链式距离的思想,提出了基于相似k距离邻居序列(SKDNS)的离群因子计算方法。通过对比该算法和其他经典局部离群点检测算法在不同数据分布情况下的挖掘结果,该算法比LOF、INFLO和COF算法的离群挖掘准确性更高,能有效克服LOF算法的不足,提高局部离群数据挖掘的准确性和多样性。 Studying on the limitation of traditional local outliers mining algorithm,this paper proposed a novel and effective algorithm.The algorithm used the concept of influenced space in influenced outlierness based algorithm (INFLO) to find the neighborhood for every object.And according to the thoughts of chaining distance in connectivity based outlier factor(COF),it proposed the concept of similar k_distance neighbor series (SKDNS) to compute the outlier factor.Comparing the outliers mining results of the algorithm and other local outliers mining algorithms in different data distribution,it can detect the outliers more accurately,verifying that the algorithm can overcome the shortcomings of LOF efficiently and improve the effectiveness and diversity of local outliers mining.
作者 王茜 刘书志
出处 《计算机应用研究》 CSCD 北大核心 2014年第6期1693-1696,1701,共5页 Application Research of Computers
关键词 离群数据挖掘 影响空间 链式距离 相似k距离邻居序列 离群因子 outliers detection influenced space chaining distance similar k_distance neighbor series outlier factor
  • 相关文献

参考文献4

二级参考文献31

  • 1黄添强,秦小麟,叶飞跃.基于方形邻域的离群点查找新方法[J].控制与决策,2006,21(5):541-545. 被引量:16
  • 2孙焕良,鲍玉斌,于戈,赵法信,王大玲.一种基于划分的孤立点检测算法[J].软件学报,2006,17(5):1009-1016. 被引量:16
  • 3杨宜东,孙志挥,朱玉全,杨明,张柏礼.基于动态网格的数据流离群点快速检测算法[J].软件学报,2006,17(8):1796-1803. 被引量:22
  • 4薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 5HAN Jia-wei, KAMBER M. Data mining: concepts and techniques [ M]. 2nd ed. San Francisco: Morgan Kaufmann, 2006.
  • 6MARATEB H R, ROJAS-MARTINEZ M, MANSOURIAN M, et al. Outlier detection in high-density surface electromyographic signals [C ]//Proc of the 32nd Annual International Conference. 2010: 4850-4853.
  • 7BREUNIG M M, KRIEGEL H, NG R T, et al. LOF: identifying density-based local outliers[ C ]//Proc of ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2000: 93-104.
  • 8ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algo- rithm for discovering clusters in large spatial databases with noise [C]//Proc of the 2nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 1996 : 226-231.
  • 9ZHOU Shui-geng, ZI-IAO Yue, GUAN Ji-hong, et al. A neighbor- hood-based clustering algorithm [ C ]//Proc of the 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin: Sprin- ger, 2005: 361-371.
  • 10JIN Wen, TUNG A K H,HAN Jia-wei, et al. Ranking outliers using symmetric neighborhood relationship [ C ]//Proc of the 10th Pacific- Asia Conference on Knowledge Discovery and Data Mining. Berlin: Springer, 2006: 93-104.

共引文献33

同被引文献217

引证文献30

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部