期刊文献+

基于字典学习的超宽带信号稀疏表示与降噪方法

Sparse representation and denoising method for UWB signal via dictionary learning
下载PDF
导出
摘要 为了实现UWB(ultra-wide band)信号的高效稀疏表示,依据UWB信道的多径簇到达特性提出一种UWB信号稀疏表示方法。该方法利用S-V(saleh-valenzuela)统计模型以多径簇信号为原子设计冗余字典,由于多径簇模式下UWB信道的稀疏度小于单径模式,基于该冗余字典的UWB信号稀疏表示更简洁。给出构造冗余字典的误差加权递归最小二乘字典学习算法,在实现UWB信号稀疏表示的同时获得较高的信噪比增益,与同类算法相比总体性能较优。理论分析和仿真实验均证明了方法的有效性。 In order to solve the UWB signal effective sparse representation issue,this paper proposed the method by the multipath cluster arrival characteristic of UWB channel.According to the S-V statistic model,it constructed the redundancy dictionary by the proposed method using multipath cluster signal as atoms,and the UWB signal sparse representation could be effectively achieved as the UWB channel sparstiy defined by multipath cluster was less than that by single path.The error weighted recursive least square dictionary learning algorithm is then presented to construct the redundancy dictionary by which much improvement on UWB sparse representation SNR is obtained at the same time,and the improved performance over its counterparts was demonstrated using simulations.It verified the validity of the proposed method by both the theoretical analysis and the experimental results.
出处 《计算机应用研究》 CSCD 北大核心 2014年第6期1795-1798,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61171170)
关键词 超宽带通信 稀疏表示 字典学习 信号降噪 稀疏多径信道 ultra-wide band (UWB) communication sparse representation dictionary learning signal denoising sparse multipath channel
  • 相关文献

参考文献5

二级参考文献154

  • 1赵瑞珍,刘晓宇,LI ChingChung,SCLABASSI Robert J,孙民贵.基于稀疏表示的小波去噪[J].中国科学:信息科学,2010,40(1):33-40. 被引量:25
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3BENEDETTO M D, KAISER T, MOLISH A F , et al. UWB communication systems: a comprehensive overview[M].New York, USA: Hindawi Publishing Corporation, 2006.
  • 4QIU R C, SCHOLTZ R A, SHEN X. Guest editorial special section on ultra-wideband wireless communications: a new horizon[J]. IEEE Trans on Veh Teehnol, 2005, 54(5) : 1525-1527.
  • 5BLAZQUEZ R, LEE F S, WENTZLOFF D D, et al. Digital architecture for an ultra-wideband radio receiver [C]//Proeeedings of IEEE VTC. Piscataway, NJ, USA: IEEE, 2003:1303-1307.
  • 6BARANIUK R. Compressive sensing [C]// Proceedings of Annual Conference on Information Sciences and Systems. Piscataway, NJ, USA: IEEE, 2008:1289-1306.
  • 7PAREDES J L, ARCE G R, WANG Zhongmin. Ultra-wideband compressed sensing: channel estimation [J]. IEEE Journal of Selected Topics in Signal Processing,2007,1(3) :383-395.
  • 8COHEN A, DAHMEN W, DEVORE R. Compressed sensing and best k-term approximation [J]. Journal of the American Mathematical Society, 2009, 22 (1) : 211- 231.
  • 9DONOHO D L. For most large underdetermined systems of equations, the minimal ll-norm near-solution approximates the sparsest near-solution [J]. Communications on Pure and Applied Mathematics, 2006, 59 (7) ; 907-934.
  • 10HAUPT J, NOWAK R. Signal reconstruction from noisy random projections [J].IEEE Trans on Inform Theory, 2006, 52(9): 4036-4048.

共引文献342

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部