摘要
为了解决网络环境中已标记入侵数据获取代价大的问题,将半监督学习引入网络入侵分类领域。根据网络攻击类型的不同,将少量的已标记入侵数据分为三部分,分别作为最初的训练集训练分类器,形成三个差异较大的初始化分类器。通过三个分类器协同学习,实现对未标记入侵数据进行标记。详细介绍了使用KDD Cup99数据集构造半监督分类实验数据集的过程。实验结果表明,半监督学习能有效地挖掘未标记入侵数据信息,具有较高的入侵分类率。
In order to solve the problem that it costs too much to obtain labeled intrusion data in the network environment,semi-supervised learning is applied into the field of network intrusion.According to the different types of network attack,this paper divided the limited labeled intrusion data into three equal training sets to form three different classifiers.Through training learning by three single classifiers,the unlabeled samples were labeled.It introduced the process of using KDD Cup 99 data sets to construct semi-supervised classification experiment data sets.The experimental results show that semi-supervised learning can effectively dig the unlabeled samples information of intrusion data and has a higher rate of intrusion classification.
出处
《计算机应用研究》
CSCD
北大核心
2014年第6期1874-1876,共3页
Application Research of Computers
基金
陕西省教育厅科研计划资助项目(12JK0748)
商洛学院教育教学改革资助项目(13jyjx111)
商洛学院科研项目(10SKY1001)
关键词
半监督学习
协同训练
入侵分类
标记
KDD
CUP
99数据集
semi-supervised learning
collaborative training
intrusion classification
labeling
KDD Cup 99 date set