期刊文献+

基于零空间追踪算法的铣削功率信号分析

An Analysis of Power Signal in Milling Based on Null Space Pursuit
下载PDF
导出
摘要 功率信号因获取简便、成本低等特点被广泛应用在切削过程监控中,因此对功率信号的特征进行深入分析非常必要。利用零空间追踪算法(Null Space Pursuit,NSP)分解铣削功率信号,分析分量及其能量分布的特征;通过计算能量分布与相关系数的相关程度,探究NSP的自适应性。分析结果表明,铣削功率信号的NSP分量包含大量有关铣削过程的信息,分量能量集中在前4阶;铣削参数恒定时,功率信号可分为静态分量和动态分量两部分;NSP分解铣削功率信号的自适应性良好。 Power signal has been widely used in cutting condition monitoring because of its easy access and low costs. Therefore, it is essential to perform a deep analysis on the features of power signals. Decomposition of power signals was implemented by using null space pursuit (NSP) method, further more, characteristics of subcomponents obtained from the decomposition and its energy distribution were analyzed in the paper. The adaptability of NSP was also explored. Analysis results showed that the NSP subcomponents of power signals in milling were rich in cutting process related information, and the energy of the original signals concentrated on the first four subcomponents. It was also found that when milling parameters kept constant, a power signal could be divided into two parts: static component and dynamic component. Experiments demonstrated that NSP had an excellent adaptability when being applied in decomposing power signals in milling.
出处 《组合机床与自动化加工技术》 北大核心 2014年第5期1-4,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 国家自然科学基金项目(51075276)
关键词 铣削 功率信号 零空间追踪 NSP milling power signal null space pursuit NSP
  • 相关文献

参考文献9

  • 1Hua Shao,Xinhua Shi,Lin Li.Power signal separation in milling process based on wavelet transform and independent component analysis [ J ].International Journal of Machine Tools & Manufacture 2011,51:701-710.
  • 2Faleh A.A1-Sulaiman,M.Abdul Baseer,Anwar K.Sheikh.Use of electrical power for online monitoring of tool condition [ J ].Journal of Materials Processing Technology 2005.166:364-371.
  • 3王海丽,马春翔,邵华,胡德金.车削过程中刀具磨损和破损状态的自动识别[J].上海交通大学学报,2006,40(12):2057-2062. 被引量:21
  • 4Silong Peng,Wen-Liang Hwang.Null Space Pursuit:An Operator-based Approach to Adaptive Signal Separation [ J ].IEEE Transactions on Signal Processing,2010,58(5).
  • 5Silong Peng,Wen-Liang Hwang.Adaptive Signal Decompo-sition Based on Local Narrow Band Signals [ J ].IEEE Trans-actions on Signal Processing,2008,56(7).
  • 6杨明伦,邵华.基于EEMD和IMF能量分布的刀具破损识别[J].组合机床与自动化加工技术,2013(4):54-58. 被引量:9
  • 7凌同华,张胜,易志强,李品钰.岩石声发射信号能量分布特征的EMD分析[J].振动与冲击,2012,31(11):26-31. 被引量:20
  • 8石新华.基于盲源分离技术的切削过程监控[D].上海:上海交通大学,2010.
  • 9张贤达.现代信号处理[M].北京:清华大学出版社,1993..

二级参考文献29

  • 1王余刚,骆英,柳祖亭.全波形声发射技术用于混凝土材料损伤监测研究[J].岩石力学与工程学报,2005,24(5):803-807. 被引量:29
  • 2杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:144
  • 3凌同华,李夕兵.单段爆破振动信号频带能量分布特征的小波包分析[J].振动与冲击,2007,26(5):41-43. 被引量:33
  • 4Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non- stationary time series analysis [J]. Proc. R. Soc. Lond. A, 1998,454 : 903 - 995.
  • 5Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the hilbert spectrum [ J ]. Annual Review of Fluid Mechanics, 1999,31:417 - 457.
  • 6Ma S, Zhang R. Empirical mode decomposition of the 1994 northridge earthquake and its interpretation for seismic source mechanism[ A]. The 10th International Conference on Soil Dynamics and Earthquake Engineering. USA, Philadelphia: [ s. n. ] ,2001:7 - 10.
  • 7Dimla Snr,Dimla E.Sensor signals for tool-wear monitoring in metal cutting operations-A review of methods[J].Int J Mach Tools Manufacture,2000,40 (6):1073-1098.
  • 8Issam Abu-Mahfouz.Drilling wear detection and classification using vibration signals and artificial neural network[J].Int J Mach Tools Manufacture,2003,43(7):707-720.
  • 9Li X Q,Wong Y S,Nee A Y C.A comprehensive identification of tool failure and chatter using a parallel multi-ART2 neural network[J].Journal of Manufacturing Science and Engineering,1998,120 (5):433 -442.
  • 10Grossberg S.Adaptive pattern classification and universal recoding.Ⅱ.Feedback,expectation,location,and illusions[J].Biol Cybernet,1976,23:187-202.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部