期刊文献+

海藻糖酶基因RNA干扰载体对花烟草的转化 被引量:2

Transformation of Nicotiana alata with RNAi Vector of Trehalase Gene
下载PDF
导出
摘要 为了能够使花烟草更好地应用于园林美化,需要进一步提高其抵抗非生物胁迫的能力。海藻糖在植物抗逆性方面具有重要作用。利用RNA干扰技术抑制植物海藻糖酶基因的表达,可以阻断海藻糖降解过程,从而使植物体内海藻糖含量增加,有望以此提高植物抵抗非生物胁迫的能力。本实验利用叶盘侵染法将带有拟南芥海藻糖酶基因干扰载体(iTre-1285)的农杆菌导入花烟草中,经过抗生素筛选初步获得阳性植株后,对阳性植株提取DNA,完成了目的基因的PCR鉴定,初步证明目的基因已转入花烟草植株中。通过本试验,在建立起花烟草基因转化方法的同时,成功地将海藻糖酶干扰基因转入花烟草中。转基因花烟草植株的获得为后期能够进一步筛选出具有抵抗非生物胁迫的转基因植株奠定了基础。 In order to make better use of flower tobacco in landscaping, its ability to resist abiotic stress need to be further enhanced. Trehalose plays an important role in plant resistance. Using RNA interference to inhibit the expression of trehalase gene can block the process of trehalose degradation, so as to increase the trehalose content in plant, which can be expected to improve plant resistance to abiotic stress. In this experiment,agrobacterium carried the RNA interference vector of Arabidopsis trehalase gene(iTre- 1285) had been transformed into flower tobacco(Nicotiana alata) by leaf disc infection method; positive plants were acquired after screening with kanamycin and carbenicillin. DNA was extracted from the positive plants and the target gene appeared in PCR detection. This meant that the target gene had been transformed into flower tobacco plants. So through this study, the genetic transformation methods of flower tobacco had established, while RNAi trehalase gene transformed into flower tobacco successfully. This result laid a foundation for cultivating transgenic flower tobacco against abiotic stress for further.
出处 《中国农学通报》 CSCD 2014年第15期282-285,共4页 Chinese Agricultural Science Bulletin
基金 企业横向资助项目"生物保鲜剂曲酸的研制及其在农产品上的应用"(2014115014)
关键词 花烟草 海藻糖酶 RNA干扰 基因转化 Nicotiana alata trehalase RNAi gene transformation
  • 相关文献

参考文献11

二级参考文献124

  • 1金波,东惠茹.一品红花色的探讨[J].园艺学报,1994,21(1):87-90. 被引量:20
  • 2戴秀玉,程苹,周坚,江慧修.海藻糖的生理功能、分子生物学研究及应用前景[J].微生物学通报,1995,22(2):102-104. 被引量:53
  • 3傅荣昭 孙勇如.植物遗传转化技术手册[M].北京:中国科学技术出版社,1994.68-74.
  • 4孟金陵.植物生殖遗传学[M].北京:科学出版社,1997.200.
  • 5Albini FM, Murelli C, Patritti G, Rovati M, Zienna P, Vita Finzi P (1994). Low-molecular weight substances from the resurrection plant Sporobolus stapfianus. Phytochemistry 37, 137-142.
  • 6Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004). The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol. 136, 3649-3659.
  • 7Bae HH, Herman E, Bailey B, Bae H J, Sicher R (2005). Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defense. Physiol. Plant. 125, 114-126.
  • 8Bell W, Sun W, Hohmann S, Wera S, Reinders A, De Virgilio C et al. (1998). Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J. Biol. Chem. 272, 33311- 33319.
  • 9Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F et al. (1993). The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol. Plant. 87, 223-226.
  • 10Blazquez MA, Santos E, Flores CL, Martinez-Zapatar JM, Salinas J, Gancedo C (1998). Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J. 13. 685-689.

共引文献174

同被引文献14

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部