期刊文献+

Property(ω) and Its Perturbations 被引量:1

Property(ω) and Its Perturbations
原文传递
导出
摘要 Abstract A Hilbert space operator T is said to have property (ω1) if σα(T)/σaw(T) π00(T), where σα(T) andσαw(T) denote the approximate point spectrum and the Weyl essential approximate point spectrum of T respectively, and π00(T) ---- {λ∈ iso σ(T), 0 〈 dim N(T- λI) 〈 ∞}. Ifσα(T)/σαw(T) = π00(T), we say T satisfies property (w). In this note, we investigate the stability of the property (wi) and the property (w) under compact perturbations, and we characterize those operators for which the property (wi) and the property (w) are stable under compact perturbations. Abstract A Hilbert space operator T is said to have property (ω1) if σα(T)/σaw(T) π00(T), where σα(T) andσαw(T) denote the approximate point spectrum and the Weyl essential approximate point spectrum of T respectively, and π00(T) ---- {λ∈ iso σ(T), 0 〈 dim N(T- λI) 〈 ∞}. Ifσα(T)/σαw(T) = π00(T), we say T satisfies property (w). In this note, we investigate the stability of the property (wi) and the property (w) under compact perturbations, and we characterize those operators for which the property (wi) and the property (w) are stable under compact perturbations.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第5期797-804,共8页 数学学报(英文版)
基金 Supported by the Fundamental Research Funds for the Central Universities(Grant No.GK201301007) National Natural Science Foundation of China(Grant No.11371012)
关键词 Property (ω1) property (ω) compact perturbations Property (ω1), property (ω), compact perturbations
  • 相关文献

参考文献16

  • 1Aiena, P., Pefa, P.: Variation on Weyl theorem. J. Math. Anal. Appl., 324, 566-579 (2006).
  • 2Aiena, P.: Property (w) and perturbation II. J. Math. Anal. Appl., 342, 830-837 (2008).
  • 3Aiena, P., Biondi, M. T.: Property (w) and perturbations. J. Math. Anal. Appl., 336, 683 692 (2007) Aiena,.
  • 4P. Biondi, M. T., Villafafie, F.: Property (w) and perturbations III. J. Math. Anal. Appl., 353, 205-214 (2009).
  • 5Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Pub- lishers, Dordrecht, 2004.
  • 6Cao, X. H., Guo, M. Z., Meng, B.: Weyl spectra and Weyl's theorem. J. Math. Anal. Appl., 288, 758 767 (2003).
  • 7Harte, R., Lee, W. Y.: Another note on Weyl's theorem. Trans. Amer. Math. Soc., 349, 2115-2124 (1997).
  • 8Herrero, D. A., Taylor, T. J., Wang, Z. Y.: Variation of the point spectrum under compact perturbations. Oper. Theory Adv. AppL, 32, 113-158 (1988).
  • 9Herrero, D. A.: Economical compact perturbations, II, Filling in the holes. J. Operator Theory, 19, 25-42 (1988).
  • 10Herrero, D. A.: Approximation of Hilbert Space Operators, Longman Scientific and Technical, Harlow, 1989.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部