期刊文献+

Instability of Standing Wave for the Klein–Gordon–Hartree Equation

Instability of Standing Wave for the Klein–Gordon–Hartree Equation
原文传递
导出
摘要 The instability property of the standing wave uω(t, x) = eiωtφ(x) for the Klein–Gordon– Hartree equation is investigated. For the case N≥3 and w2 〈2/N+4-γ,it is shown that the standing wave eiwtφ(x) is strongly unstable by blow-up in finite time. The instability property of the standing wave uω(t, x) = eiωtφ(x) for the Klein–Gordon– Hartree equation is investigated. For the case N≥3 and w2 〈2/N+4-γ,it is shown that the standing wave eiwtφ(x) is strongly unstable by blow-up in finite time.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第5期861-871,共11页 数学学报(英文版)
基金 The first author is supported by the Key Project of Chinese Ministry of Education(Grant No.211162) Sichuan Province Science Foundation for Youths(Grant No.2012JQ0011) the second author is supported byNational Natural Science Foundation of China(Grant No.11371267)
关键词 Klein–Gordon–Hartree equation standing waves strong instability Klein–Gordon–Hartree equation,standing waves,strong instability
  • 相关文献

参考文献28

  • 1Ackermann, N.: On a periodic Schrodinger equation with nonlocal superlinear part. Math. Z., 248, 423-443 (2004).
  • 2Berestycki, H., Cazenave, T.: Instabilite des etats stationnaires dans les equations de Schrodinger et de Klein-Gordon non linearires. C. R. Acad. Sci. Paris, Seire I, 293, 489-492 (1981).
  • 3Brezis, H., Leib, E. H.: Minimum action solutions of some vector field equations. Comm. Math. Phys., 96, 97-113 (1984).
  • 4Cazenave, T., Lions, P. L.: Orbital stability of standing waves for some nonlinear Schrodinger equations. Comm. Math. Phys., 85, 549-561 (1982).
  • 5Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry, I. J. Funct. Anal., 74, 160-197 (1987).
  • 6Jeanjean, L., Le Coz, S.: Instability for standing waves of nonlinear Klein-Gordon equations via mountain- pass arguments. Trans. Amer. Math. Soc., 361, 5401-5416 (2009).
  • 7Lieb, E. H.: Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Studies in Appl. Math., ST, 93-105 (1976/77).
  • 8Lieb, E. H.: On the lowest eigenvalue of Laplacian for intersection of two domains. Invent. Math.,74, 441-448 (1983).
  • 9Lions, P. L.: The Choquard equation and related questions. Nonl. Anal. T. M. A., 4, 1073 1079 (1980).
  • 10Liu, Y.: Blow up and instability of solitary-wave solutions to a generalized Kadomtsev- Petviashvili equa- tion. Trans. Amer. Math. Soc., 353, 191-208 (2000).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部