期刊文献+

切换系统Lyapunov指数的算法及应用 被引量:5

Algorithm for calculating the Lyapunov exponents of switching system and its application
原文传递
导出
摘要 Lyapunov指数是判定系统非线性行为的重要工具,然而目前的大多算法并不适用于切换系统.在传统Jacobi法的基础上,提出了一种新算法,可以直接计算得到n维切换系统的n个Lyapunov指数.首先,根据切换面处相邻轨线的动态变化规律,从相空间几何推导出切换面处轨线变化的Jacobi矩阵;然后,对该矩阵进行QR分解,从而利用R的对角线元素实现Lyapunov指数的切换补偿;最后,将新算法应用到平面双螺旋混沌系统、Glass网络和航天器供电系统三个实例中,并将计算结果与Poincaré映射方法的计算结果进行比较,对新算法的有效性进行验证. Lyapunov characteristic exponent is significant for analyzing nonlinear dynamics. However, most algorithms are not applicable for the switching system. According to the traditional Jacobi method, in this paper we propose a new algorithm which can be used to compute n Lyapunov exponents for an n-dimensional switching system. We first study the geometric dynamics of two adjacent trajectories near the switching manifold, and obtain a compensation Jacobi matrix caused by switching. Then with QR-decomposition of this matrix, we compensate for the diagonal vector of R to realize the Lyapunov exponent expansion. Finally, we use the algorithm in a two-dimensional double-scrolls system, the Glass network and a spacecraft power system, and show its correctness and effectiveness by comparing the results with the Poincaré-map method.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第10期9-17,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61104150) 重庆市杰出青年科学基金(批准号:cstc2013jcyjjq40001) 重庆市教育委员会科学技术研究计划(批准号:KJ130517)资助的课题~~
关键词 切换系统 LYAPUNOV指数 JACOBI矩阵 切换面 switching systems Lyapunov exponents Jacobi matrix switching manifold
  • 相关文献

参考文献28

  • 1Yang X S.2009.Int.J.Bifurcat.Chaos,19,1127.
  • 2Li Q D,Yang X S.2010.Int.J.Bifurcat.Chaos,20,467.
  • 3李清都, 唐宋.2013 物理学报 62 020510.
  • 4Kaczyński T,Mischaikow K M,Mrozek M.2004.Comput.Homol.,157,100.
  • 5Neumann N,Sattel T,Wallaschek J.2007.J.Vib.Control,13,1393.
  • 6杨芳艳,胡明,姚尚平.2013.物理学报,62,100501.
  • 7李清都, 谭宇铃, 杨芳艳 2011 物理学报 60 030206.
  • 8李清都, 周红伟, 杨晓松 2012 物理学报 61 040503.
  • 9Zhang H G,Fu J,Ma T D,Tong S C.2009.Chin.Phys.B,18,969.
  • 10吴立峰,关永,刘勇.2013.物理学报,62,110510.

二级参考文献12

  • 1尹玉娟,刘玉忠,赵军.一类切换线性广义系统的稳定性[J].控制与决策,2006,21(1):24-27. 被引量:24
  • 2MENG Bin,ZHANG Ji-Feng.Output Feedback Based Admissible Control of Switched Linear Singular Systems[J].自动化学报,2006,32(2):179-185. 被引量:15
  • 3Ogorzalek M J. Overview of electronic chaos generation, control, and applications[A]. Proc. SPIE[C]. 1995,2612:2 - 13.
  • 4Nakagawa S, Saito T. An RC OTA hysteresis chaos generator[J]. IEEE Trans Circuits Syst I, 1996,43(12):1019- 1021.
  • 5Kataoka M, Saito T, Chen G. A two-port VCCS chaotic oscillator and quad screw attractor[J] .IEEE Trans Circuits Syst I,2001,48(2) :221-225.
  • 6Brown R. Generalization of the Chua equations[J].IEEE Trans Circuits Syst I,1993,40(11) :878 - 884.
  • 7Li Q, Yang X -S, Yang F. Multiple-scrolls chaotic attractor and its circuit implementation[J]. Electron Lett,2003,39(18):1306- 1307.
  • 8Yang X-S, Li Q. Chaos generator via Wien-bridge oscillator[J]. Electron Lett,2002,38(13) :623 - 625.
  • 9Yang X -S, Li Q, Chen G. A twin-star hyperchaotic attractor and its circuit implementation[J]. Int J Circ Theor And Appl, 2003,31 (6): 637-640.
  • 10Wiggins S. Introduction to Applied Nonlinear dynamical Systems and Chaos[M]. New York: Springer-Verlag, 1990.

共引文献11

同被引文献25

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部