期刊文献+

CuHg_2Ti型Ti_2Cr基合金的电子结构、能隙起源和磁性研究

Electronic structures, band-gap origins and magnetisms of Ti_2Cr-based alloys with CuHg_2Ti-type structure
原文传递
导出
摘要 利用第一性原理计算方法,研究了CuHg2Ti结构下Ti2CrK(K=Sb,Ge,Sn,Sb,Bi)系列合金的电子结构、能隙起源和磁性.研究发现:Ti2CrK(K=Si,Ge)合金是普通半导体材料;Ti2CrK(K=Si,Bi)合金是亚铁磁性半金属材料,其半金属性能隙受到Sb和Bi原子s态的直接影响;Ti2CrSn合金是完全补偿的亚铁磁性半导体.基于Ti2CrSn合金两个自旋方向上的能隙起源不同,通过Si和Ge替换掺杂同族Sn元素调制能隙的宽度,获得了完全补偿亚铁磁性自旋无能隙材料;通过Fe和Mn替换掺杂过渡族Cr元素获得了一系列半金属材料.Ti2Cr1-xFexSn和Ti2Cr1-xMnxSn合金都具有亚铁磁性.所研究的这些半金属性合金的分子磁矩Mtotal与总的价电子数Zt服从Mtotal=Zt-18规则. The electronic structures, band-gap origins and magnetisms of Ti2Cr-based alloys with CuHg2Ti-type structure are studied using the first principles calculations. It is found that Ti2CrK (K = Si, Ge) alloys are semiconductors Ti2CrK (K = Sb, Bi) alloys are predicted to be half-metallic ferrimagnets and their half-metallic band gaps are affected directly by the S states of Sb and Bi atoms. Ti2CrSn alloy is a completely-compensated ferrimagnetic semiconductor. Due to the different band-gap origins of Ti2CrSn alloy in two spin directions, we can adjust the width of band gap by doping engineering. The ferrimagnetic spin-gapless materials are achieved by substituting Si or Ge for Sn. Substituting Fe or Mn for Cr, we gain a series of half-metallic materials. Ti2Cr1-xFexSn and Ti2Cr1-xMnxSn alloys are in ferrimagnetic states. All the half-metallic Ti2Cr-based alloys follow Mtotal =Zt - 18 rule (Mtotal is the total magnetic moment and Zt is the valence concentration).
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第10期350-359,共10页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51271071 11074160) 教育部新世纪优秀人才支持计划(批准号:NCET-10-0126) 河北省应用基础研究计划重点基础研究项目(批准号:12965136D) 河北省自然科学基金(批准号:E2013202181) 河北省高等学校科学技术研究青年基金(批准号:Q2012008)资助的课题~~
关键词 HEUSLER合金 半金属材料 自旋无能隙材料 Heusler alloy half-metallic material spin-gapless materials
  • 相关文献

参考文献2

二级参考文献18

  • 1蔡建秋,谷温静,黄运米,张栋,谭明秋.Co_2YSn(Y=Ti,Zr)电子结构和轨道磁性的第一性原理研究[J].原子与分子物理学报,2007,24(1):31-39. 被引量:4
  • 2Tae S C. Formation of PhTe intermetallic compound by mechanical alloying of elemental Pb and Te powder[J]. ScrMetall Mater., 1995, 32(4): 407.
  • 3Glen A, Moayyed A. The maximum possible conversion efficiency of silicon-germanlun thermoelectric generators[J]. J. Appl. Phys., 1991, 70(4): 2694.
  • 4Block T, Carey M J, Gurney B A, etal. Band-structure calculations of the half-metallic ferromagnetism and structural stability of full-and hal&Heusler phases[J]. Phys. Rev. B, 2004, 70(20): 205114.
  • 5Saito T, Katayama T, Ishikawa T, et al. Interface structure of half-metallic Heusler alloy Co2 MnSi thin films facing an MgO tunnel barrier determined by x- ray magnetic circular dichroism[J]. Phys. Rev. B, 2010, 81(14) : 144417.
  • 6Liu Y, Shelford L R, Kruglyak V V, etal. Optically induced magnetization dynamics and variation of damping parameter in epitaxial Coz MnSi Heusler al- loy films[J]. Phys. Rev. B, 2010, 81(9) : 094402.
  • 7Burzo E, Balazs I, Chioncel L, et al. Rare-earth impurities in Co2MnSi: improving half-metallicity at fi- nite temperatures[J].Phys. Rev. B, 2009, 80(21) : 214422.
  • 8Galanakis I. Towards hall-metallic interfaces: Co- CrA1/InP contacts[J]. J. Phys. : Condens. Matter, 2004, 16(45): 8007.
  • 9Slebarski A, Goraus J. Electronic structure and thermodynamic properties of FezVGa[J]. Phys. Rev. B, 2009, 80(23): 235121.
  • 10Feng L, Ma L, Zhu Z Y, et al. Ferromagnetic exehange interaction between Co and Mn in the Heusler alloy CuCoMnAI[J]. J. Appl. Phys. , 2010, 107(1) : 013913.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部