期刊文献+

融入形状先验的马尔科夫图像分割

Markov Image Into Shape Prior Segmentation
下载PDF
导出
摘要 在马尔科夫(MRF)图像分割框架中融合形状先验约束,把图像分割问题作为最大后验(MAP)估计的一个马尔科夫随机场,在本质上,相当于最小化吉布斯能量函数.然后通过通量最大约束将形状先验信息合并到吉布斯能量函数,最后用图割技术最小化使吉布斯能量函数达到最优解,促使分割轮廓接近给定的形状模板.实验结果表明,算法效率得到了提高,分割效果得到了很大的改善. In the Markov (MRF) fusion shape prior constraint framework for image segmentation, the image segmentation problem as a maximum a posteriori (MAP) estimation of a Markov random field, in essence, is equivalent to the minimization of the Gibbs energy function. Then the shape prior information is incorporated into the Gibbs energy function by flux maximum constraint, finally using graph cut techniques for minimizing the energy function to achieve Gibbs optimal solution, the segmentation contour close to the given shape template. The experimental results show that, the efficiency of the algorithm is improved, the segmentation effect is greatly improved.
机构地区 青海师范大学
出处 《青海师范大学学报(自然科学版)》 2014年第1期10-14,共5页 Journal of Qinghai Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(NO.60963016) 教育部"春晖计划"合作项目(NO.Z2012100)
关键词 形状先验 马尔科夫 图像分割 梯度向量场 shape prior Markov image segmentation gradient vector field
  • 相关文献

参考文献10

  • 1Y. Boykov and G. Funka-Lea. Graph cuts and efficient N-D image segmentation. International Journal of Computer Vision, 70(2) : 109- 131, Nov. 2006.
  • 2D. R. Chittajallu, G. Brunner, U. Kurkure, R. Yalaman-chili, and I. A. Kakadiaris. Fuzzy-cuts: A knowledge-driven graph-based method for medical image segmentation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pages 715 -722, Mi- ami Beach, FL, Jun. 20-25 2009.
  • 3V. Kolmogorov and Y. Boykov. What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In- Proc. 10 th IEEE International Conference on Computer Vision, volume 1, pages 564-571, Beijing, China, Oct. 17-20 2005.
  • 4D. Freedman and T. Zhang. Interactive graph cut based segmentation with shape priors. InProc. IEEE Conference on Computer Vision and Pattern Recognition, pages 755-762, San Diego, CA, Jun. 20-25 2005.
  • 5V. Nhat and B. Manjunath. Shape prior segmentation of mul-tiple objects with graph cuts. In Proc. IEEE Conference on Computer Vi- sion and Pattern Recognition, pages 1-8, An-chorage, AK, 2008.
  • 6M. Kumar, P. Torr, and A. Zisserman. OBJ CUT. InProc. IEEE Conference on Computer Vision and Pattern Recogni-tion, pages 18- 25, San Diego, CA, Jun. 20-25 2005.
  • 7J. Malcolm, Y. Rathi, and A. Tannenbaum. Graph cut seg-mentation with nonlinear shape priors. InProc. IEEE Inter-national Confer- ence on Image Processing, pages 365-368, San Antonio, Texas, Sep. 16-19 2007.
  • 8Yongyue Zhang, Stephen Smith, and Michael Brady. Hidden Markov Random Field Model and Segmentation of Brain MR Images[M].
  • 9Gavriil Tsechpenakis, Dimitris Metaxas. CoCRF Deformable Model: A Geometric Model. Driven by Collaborative Conditional Random Fields. IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 10, OCTOBER 2009.
  • 10msri. org/people/members/eranb.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部