期刊文献+

Asymptotic Behavior of Impulsive Stochastic Functional Differential Equations

Asymptotic Behavior of Impulsive Stochastic Functional Differential Equations
原文传递
导出
摘要 In this paper, a nonlinear and nonautonomous impulsive stochastic functional differential equation is considered. By establishing a nonautonomous -operator impulsive delay inequality and using the properties of ρ-cone and stochastic analysis technique, we obtain the p-attracting set and p-invariant set of the impulsive stochastic functional differential equation. An example is also discussed to illustrate the efficiency of the obtained results. In this paper, a nonlinear and nonautonomous impulsive stochastic functional differential equation is considered. By establishing a nonautonomous -operator impulsive delay inequality and using the properties of ρ-cone and stochastic analysis technique, we obtain the p-attracting set and p-invariant set of the impulsive stochastic functional differential equation. An example is also discussed to illustrate the efficiency of the obtained results.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第6期1061-1072,共12页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.11101367,11271270,11101298 and11026140) the China Scholarship Council(Grant No.201208330001)
关键词 p-attracting set p-invariant set -operator inequality STOCHASTIC IMPULSIVE p-attracting set,p-invariant set,-operator inequality,stochastic,impulsive
  • 相关文献

参考文献3

二级参考文献22

  • 1曹桂兰.Banach值随机微分方程解的存在唯一性(英文)[J].应用数学,2006,19(1):75-79. 被引量:1
  • 2沈轶,江明辉,廖晓昕.随机中立型泛函微分方程的Lasalle定理[J].控制理论与应用,2006,23(2):221-224. 被引量:3
  • 3Bin LIU,Xinzhi LIU,Xiaoxin LIAO.EXISTENCE AND UNIQUENESS AND STABILITY OF SOLUTIONS FOR STOCHASTIC IMPULSIVE SYSTEMS[J].Journal of Systems Science & Complexity,2007,20(1):149-158. 被引量:4
  • 4V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations,World Scientific Press, Singapore, 1989.
  • 5D. D. Bainov and P. S. Simeonov, Systems with Impulsive Effects: Stability Theory and Applications, Halsted Press,New York,1989.
  • 6V. Lakshmikantham and X. Z. Liu, Stability Analysis in Terms of Two Measures, World Scientific,Singapore, 1993.
  • 7X. Z. Liu,Stability results for impulsive differential systems with applications to population growth models,Dynamics and Stability of Systems,1994,9(2): 163-174
  • 8H. Ye, A. N. Michel, and L. Hou, "Stability analysis of systems with impulsive effects, IEEE Trans.Automatic Control, 1998, 43(12): 1719-1723.
  • 9J. H. Shen and J. Yan, Razumikhin type stability theorems for impulsive functional differential equations,Nonlinear Analysis,1998, 33: 519-531.
  • 10X. Z. Liu and G. Ballinger, Uniform asymptotic stability of impulsive delay differential equations,Computers and Mathematics with Applications,2001, 41: 903-915.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部