摘要
With the aid of the zero-curvature equation, a novel integrable hierarchy of nonlinear evolution equations associated with a 3 x 3 matrix spectral problem is proposed. By using the trace identity, the bi-Hamiltonian structures of the hierarchy are established with two skew-symmetric operators. Based on two linear spectral problems, we obtain the infinite many conservation laws of the first member in the hierarchy.
With the aid of the zero-curvature equation, a novel integrable hierarchy of nonlinear evolution equations associated with a 3 x 3 matrix spectral problem is proposed. By using the trace identity, the bi-Hamiltonian structures of the hierarchy are established with two skew-symmetric operators. Based on two linear spectral problems, we obtain the infinite many conservation laws of the first member in the hierarchy.
基金
supported by the National Natural Science Foundation of China(Grant Nos.11331008 and 11171312)