期刊文献+

Gap solitons in parity time complex superlattice with dual periods

Gap solitons in parity time complex superlattice with dual periods
下载PDF
导出
摘要 A theory is presented to investigate the existence and propagation stability of gap solitons in a parity-time (PT) com- plex superlattice with dual periods. In this superlattice, the real and imaginary parts are both in the form of superlattices with dual periods. In the self-focusing nonlinearity, PT solitons can exist in the semi-infinite gap. However, only those gap solitons with low powers can propagate stably, whereas the high-power solitons present periodic oscillation and simultane- ously suffer energy decay. In the self-defocusing nonlinearity, PT solitons only exist in the first gap and all these solitons are stable. A theory is presented to investigate the existence and propagation stability of gap solitons in a parity-time (PT) com- plex superlattice with dual periods. In this superlattice, the real and imaginary parts are both in the form of superlattices with dual periods. In the self-focusing nonlinearity, PT solitons can exist in the semi-infinite gap. However, only those gap solitons with low powers can propagate stably, whereas the high-power solitons present periodic oscillation and simultane- ously suffer energy decay. In the self-defocusing nonlinearity, PT solitons only exist in the first gap and all these solitons are stable.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期246-251,共6页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.61308019) the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province,China(Grant No.Yq2013157)
关键词 spatial soliton parity-time soliton gap soliton SUPERLATTICE spatial soliton, parity-time soliton, gap soliton, superlattice
  • 相关文献

参考文献19

  • 1Ruschhaupt A, Delgado F and Muga J G 2005 J. Phys. A: Math. Gen. 38 L171.
  • 2Riiter C E, Makris K G, E1-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192.
  • 3E1-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett. 32 2632.
  • 4Musslimani Z H, Makris K G, E1-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402.
  • 5Abdullaev F Kh, Kartashov Y V, Konotop V V and Zezyulin D A 2011 Phys. Rev. A 83 041805.
  • 6Shi Z, Jiang X, Zhu X and Li H 2011 Phys. Rev. A 84 053855.
  • 7Nixon S, Ge L and Yang J 2012 Phys. Rev. A 85 023822.
  • 8Li H, Shi Z, Jiang X and Zhu X 2011 Opt. Lett. 36 3290.
  • 9Kartashov Y V 2013 Opt. Lett. 38 2600.
  • 10He Y, Zhu X, Mihalache D, Liu J and Chen Z 2012 Phys. Rev. A 85 013831.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部