摘要
The green long-after-glow luminescence from Tb3+-doped Sr2SiO4 phosphors, which are synthesized by the high temperature solid state reaction in a reductive atmosphere, is observed in this paper. The results show that under ultraviolet excitation, the obtained phosphors produce an intense green-lighting-emission from the Tb3+, and the green-lighting long- after-glow luminescence related to Tb3+ can last half an hour after the irradiation source has been removed. Moreover, the effects of co-doping Li+, Dy3+, Er3+, Gd3+, and Yb3+ with Tb3+ on the decay properties and thermoluminescence properties are investigated to confirm the long-after-glow mechanism.
The green long-after-glow luminescence from Tb3+-doped Sr2SiO4 phosphors, which are synthesized by the high temperature solid state reaction in a reductive atmosphere, is observed in this paper. The results show that under ultraviolet excitation, the obtained phosphors produce an intense green-lighting-emission from the Tb3+, and the green-lighting long- after-glow luminescence related to Tb3+ can last half an hour after the irradiation source has been removed. Moreover, the effects of co-doping Li+, Dy3+, Er3+, Gd3+, and Yb3+ with Tb3+ on the decay properties and thermoluminescence properties are investigated to confirm the long-after-glow mechanism.
基金
supported by the National Natural Science Foundation of China(Grant Nos.51272097,61265004,and 61265007)