期刊文献+

Optical properties and chemical composition of PM_(2.5) in Shanghai in the spring of 2012 被引量:4

Optical properties and chemical composition of PM_(2.5) in Shanghai in the spring of 2012
原文传递
导出
摘要 The semi-diurnal mean aerosol mass concentration, chemical composition, and optical properties of PM2.s were investigated in Shanghai during the spring of 2012. Slight pollution was observed during the study period. The average PM2.s concentration was 64.11± 22.83μg/m3. The mean coefficients of extinction, scattering, and absorption at 532 nm were 125.9 ± 78.5, 91.1 ± 56.3, and 34.9 ±23.6 Mm-1, respectively. A relatively low mean single scattering alhedo at 532 nm (0.73 ±0.04) and low level of elemental carbon (EC, 2.67± 1.96 μg/m3) suggested that the light absorption was enhanced due to the internal mixing of the EC. Sulfate contributed the most to aerosol light scattering in Shanghai. The chemical composition of PM2.5 was dominated by particulate organic matter, sulfate, nitrate, ammonium, and EC. Anthropogenic sources made a significant contribution to the emission and loading of the particulate pollutants. A relatively good correlation between the aerosol chemical composition and the cloud condensation nuclei (CCN) activation indicated that aerosol chemistry is an important factor that influences the saturated hygroscopicity and growth of the aerosol. The semi-diurnal mean aerosol mass concentration, chemical composition, and optical properties of PM2.s were investigated in Shanghai during the spring of 2012. Slight pollution was observed during the study period. The average PM2.s concentration was 64.11± 22.83μg/m3. The mean coefficients of extinction, scattering, and absorption at 532 nm were 125.9 ± 78.5, 91.1 ± 56.3, and 34.9 ±23.6 Mm-1, respectively. A relatively low mean single scattering alhedo at 532 nm (0.73 ±0.04) and low level of elemental carbon (EC, 2.67± 1.96 μg/m3) suggested that the light absorption was enhanced due to the internal mixing of the EC. Sulfate contributed the most to aerosol light scattering in Shanghai. The chemical composition of PM2.5 was dominated by particulate organic matter, sulfate, nitrate, ammonium, and EC. Anthropogenic sources made a significant contribution to the emission and loading of the particulate pollutants. A relatively good correlation between the aerosol chemical composition and the cloud condensation nuclei (CCN) activation indicated that aerosol chemistry is an important factor that influences the saturated hygroscopicity and growth of the aerosol.
出处 《Particuology》 SCIE EI CAS CSCD 2014年第2期52-59,共8页 颗粒学报(英文版)
基金 supported by the National Basic Research Program of China(2010CB428503) the National Natural Science Foundation of China(41075096,21190053,21177025) the Shanghai Science and Technology Commission of Shanghai Municipality(12DJ1400100,12DZ2260200) the Priority Fields for Ph.D.Programs Foundation of Ministry of Education of China (0110071130003) an FP7 project(AMIS,PIRSES-GA-2011)
关键词 PM2.5 Chemical compositionOptical property PM2.5 Chemical compositionOptical property
  • 相关文献

参考文献2

二级参考文献25

共引文献50

同被引文献77

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部