期刊文献+

Ti掺杂6H-SiC电学性质研究 被引量:5

Study on Electrical Properties of Ti Doped 6H-SiC
下载PDF
导出
摘要 使用物理气相传输方法(PVT)制备了2英寸Ti掺杂与非故意掺杂6H-SiC衬底,并对衬底进行热处理。使用拉曼光谱仪、低温光致发光谱(LTPL)和非接触电阻率测试对衬底晶型、掺杂元素和电阻率进行了表征。结果表明,Ti元素有效掺入6H-SiC中,Ti掺杂对PVT方法生长的6H-SiC衬底晶型稳定性无影响,Ti掺杂衬底与非故意掺杂衬底均为6H-SiC,热处理后Ti掺杂衬底电阻率达到1010~1011Ω·cm。初步认为Ti掺杂衬底热处理过程中产生的大浓度碳空位VC是引起Ti掺杂样品电阻率上升的主要原因。 2 inch Ti doped and unintentional doped 6H-SiC substrates were fabricated by physical vapor transport(PVT) method and underwent thermal treatment. The crystal form,doping element and resistivity were characterized by Raman spectroscopic,low temperature photoluminescence(LTPL) and contact less resistivity measurement. The results show that the element Ti effectively doped in 6H-SiC during the PVT growth process,both Ti doped and unintentional doped substrates are 6H-SiC,and Ti doping has no influence on the stability of 6H-SiC crystal form. The resistivity of Ti doped SiC substrate increases more significantly than the unintentional doped substrate after thermal treatment,reach to 1010 ~ 1011Ω·cm. The large concentration of carbon vacancies(VC) generated during the thermal treatment process in the Ti doped substrate is the main reason for resistivity increases.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2014年第4期733-737,共5页 Journal of Synthetic Crystals
基金 国家高技术研究发展计划(863计划)(2011AA050401) 国家自然科学基金(51323002) 山东大学自主创新基金(2012ZD047) 国家科技重大专项(2012ZX01006)
关键词 物理气相传输 Ti掺杂 6H-SIC 电阻率 physical vapor transport Ti doping 6H-SiC resistivity
  • 相关文献

参考文献13

  • 1Bhatnagar M, Baliga B J. Comparison of 6H-SiC, 3C-SiC, anti Si for Power Devices[ J]. Electron Devices, IEEE Transactions on, 1993,40(3 ) : 645-655.
  • 2Hobgood H M D, Glass R C, Augustine G, et al. Semi-insulating 6H-SiC Grown by Physical Vapor Transport[ J]. Applied Physics Letters, 1995,66(11):1364-1366.
  • 3宋生,胡小波,徐现刚.半绝缘SiC单晶生长和表征[J].人工晶体学报,2012,41(S1):166-169. 被引量:4
  • 4彭同华,刘春俊,王波,王锡铭,郭钰,赵宁,李龙远,刘宇,黄青松,贾玉萍,王刚,郭丽伟,陈小龙.宽禁带半导体碳化硅单晶生长和物性研究进展[J].人工晶体学报,2012,41(S1):234-241. 被引量:14
  • 5Son N T, Carlsson P, Gallstrfim A, et al. Prominent Defects in Semi-insulating SiC Substrates[J]. Physica B: Condensed Matter,2007,401:67- 72.
  • 6Sghaier N, Bluet J M, Souifi A, et al. Study of Trapping Phenomenon in 4H-SiC MESFETs: Dependence on Substrate Purity [ J ]. Electron Devices, IEEE Transactions on,2003,50(2) :297-302.
  • 7王辉,严成锋,孔海宽,陈建军,忻隽,施尔畏.Effect of vanadium on the room temperature ferromagnetism of V-doped 6H-SiC powder[J].Chinese Physics B,2013,22(2):474-476. 被引量:1
  • 8Maier K, MUller H D, Schneider J. Transition Metals in Silicon Carbide (SiC) : Vanadium and Titanium [ C ]. Materials Science Forum, 1992, 83:1183-1194.
  • 9Garces N Y, Glaser E R, Carlos W E, et al. Behavior of Defects in Semi-insulating 4H-SiC after Ultra-high Temperature Anneal Treatments [ J ]. Physica B: Condensed Matter,2007,401:77-80.
  • 10Kimotn T, Nishino H, Ueda T, et al. Photoluminescence of Ti Doped 6H-SiC Grown by Vapor Phase Epitaxy[ J]. Japanese Journal of Applied Physics,1991,30(2B) :L289-L291.

二级参考文献33

  • 1朱丽娜,陈小龙,杨慧,彭同华,倪代秦,胡伯清.Effects of Post-Thermal Treatment on Quality of SiC Grown by PVT Method[J].Chinese Physics Letters,2006,23(8):2273-2276. 被引量:1
  • 2Yakimova R and Janzen E 2000 Diarnond Relat. Mater. 9432.
  • 3Ohno H 1998 Science 281951.
  • 4Dietl T 2010 Nat. Mater. 9965.
  • 5Xu X G, Yang H L, Wu Y, Zhang D L and Jiang Y 2012 Chin. Phys. B 21047504.
  • 6Sun Y B, Zhang X Q, Li G K and Cheng Z H 2012 Chin. Phys. B 21 047503.
  • 7Liu X C, Chen Z Z, Shi E W, Liao D Q and Zhou K J 2011 Chin. Phys. B 20037501.
  • 8Zheng H W, Wang Z Q, Liu X Y, Diao C L, Zhang H Rand Gu Y Z 2011 Appl. Phys. Lett. 99 222512.
  • 9Zhou J, Li H, Zhang L, Cheng J, Zhao H, Chu W, Yang J, Luo Y and Wu Z 2011 J. Phys. Chern. C 115253.
  • 10Song B, Bao H, Li H, Lei M, Peng T, Jian J, Liu J, Wang W, Wang W and Chen X 2009 J. Arn. Chern. Soc. 131 1376.

共引文献16

同被引文献46

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部