期刊文献+

发音错误检测中基于多数据流的Tandem特征方法 被引量:1

Multi-stream based Tandem feature method for mispronunciation detection
下载PDF
导出
摘要 针对发音错误检测中标注的发音数据资源有限的情况,提出在Tandem系统框架下利用其他数据来提高特征的区分性。以中国人的英语发音为研究对象,选取了相对容易获取的无校正发音数据、母语普通话和母语英语作为辅助数据,实验结果表明,这几种数据都能够有效地提高系统性能,其中无校正数据表现出最好的性能。同时,比较了不同的扩展帧长,以多层神经感知(MLP)和深度神经网络(DNN)作为典型的浅层和深层神经网络,以及Tandem特征的不同结构对系统性能的影响。最后,多数据流融合的策略用于进一步提高系统性能,基于DNN的无校正发音数据流和母语英语数据流合并的Tandem特征取得了最好的性能,与基线系统相比,识别正确率提高了7.96%,错误类型诊断正确率提高了14.71%。 To deal with the under-resourced labeled pronunciation data in mispronunciation detection, some other data were used to improve the discriminability of feature in the framework of Tandem system. Taking Chinese learning of English as object, unlabeled data, native Mandarin data and native English data which can be relatively easily accessed were selected as the assisted data. The experiments show that these types of data can effectively improve the performance of system, and the unlabeled data performs the best. And the effect to system performance was discussed with different length of frame context, the shallow and deep neural network typically represented by Multi-Layer Perception (MLP) and Deep Neural Network (DNN), and different structure of Tandem feature. Finally the strategy of merging multiple data streams was used to further improve the system performance, and the best system performance was achieved by combining the DNN based unlabeled data stream and native English stream. Compared with the baseline system, the recognition accuracy is increased by 7.96%, and the diagnostic accuracy of mispronunciation type is increased by 14.71%.
出处 《计算机应用》 CSCD 北大核心 2014年第6期1694-1698,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61370034 61273268 61005019 61105017)
关键词 发音错误检测 Tandem特征 发音规则 深度神经网络(DNN) 多层神经感知(MLP) mispronunciation detection Tandem feature phonological rule Deep Neural Network (DNN) Multi-Layer Perception (MLP)
  • 相关文献

参考文献18

  • 1FRANCO H, NEUMEYER L, RAMOS M, et al. Automatic detec- tion of phone-level mispronunciation for language learning [ EB/ OL]. [ 2013-10-10]. http://www, speech, sri. com/people/hef/pa- pers/F020. PS.
  • 2YOON S Y, HASEGAWA-JOHNSON M, SPROAT R. Landmark- based automated pronunciation error detection [ EB/OL]. [ 2013-10- 10 ]. http://www, isle. illinois, edu/sst/pubs/2010/ yoonl0interspeech, pdf.
  • 3WEI S, HU G, HU Y, et al. A new method for mispronunciation detection using support vector machine based on pronunciation space models [ J]. Speech Communication, 2009, 51(10) : 896 - 905.
  • 4LI H, HUANG S, WANG S, et al. Context-dependent duration modeling with backoff strategy and look-up tables for pronunciation assessment and mispronunciation detection [ C]// Proceedings of the 12th Annual Conference of the International Speech Communica- tion Association. Baixas: ISCA, 2011:1133 - 1136.
  • 5HARRISON A M, LOW K, QIAN X, et al. Implementation of an extended recognition network for mispronunciation detection and di- agnosis in computer-assisted pronunciation training [ C]// Proceed- ings of the 2009 Speech and Language Technology in Education Workshop. Baixas: ISCA, 2009: 137-140.
  • 6LOW K, ZHANG S, MENG H. Automatic derivation of phonologi- cal rules for mispronunciation detection in a computer-assisted pro- nunciation training system [ C]// Proceedings of the l lth Annual Conference of the International Speech Communication Association. Baixas: ISCA, 2010:765-768.
  • 7WANG Y B, LEE L S. Improved approaches of modeling and detec- ting error patterns with empirical analysis for computer-aided pronun- ciation training [ C]// Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscat- away: IEEE Press, 2012:5049 -5052.
  • 8STANLEY T, HACIOGLU K. Improving Ll-specific phonological error diagnosis in computer assisted pronunciation training [ C]// Proceedings of the 13th Annual Conference of the International Speech Communication Association. Baixas: ISCA, 2012:826 - 829.
  • 9QIAN X, SOONG F K, MENG H M. Discriminative acoustic model for improving mispronunciation detection and diagnosis in Computer- Aided Pronunciation Training (CAPT) [ C]// Proceedings of the 11 th Annum Conference of the International Speech Communication Association. Baixas: ISCA, 2010:757-760.
  • 10QIAN X, MENG H M, SOONG F K. The use of DBN-HMMs for mispronunciation detection and diagnosis in L2 english to support computer-aided pronunciation training [ C]// Proceedings of the 13th Annual Conference of the International Speech Communication Association. Baixas: ISCA, 2012:774-777.

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部