期刊文献+

基于参考纹理与自身色彩的图像修复

Image inpainting using reference image texture and distress image color
下载PDF
导出
摘要 传统的图像修复工作仅仅利用破损图像本身的信息完成,破损面积较大并且结构比较复杂时,破损图像不能提供足够的信息导致修复效果不理想。针对这个问题提出了基于参考图像纹理与破损图像自身颜色的修复算法。该算法在图像库中通过图像检索智能筛选相似参考图像,并选择最优区域填充破损图像区域,利用参考图像样块与自身未破损区域的纹理信息保证修复边界的平滑性,再结合颜色迁移与扩展算法使破损图像修复区域与完好区域的色彩协调一致。实验结果表明新提出的修复算法使得图像修复区域过渡更加自然,能在视觉上有较好的效果。 While dealing with a target image of large damaged area and complex structure, the traditional image restoration algorithms cannot get sufficient information from it, leading to unsatisfactory repair effects. An algorithm based on the texture of reference image and the color of target image was proposed to overcome this defect. First, the suitable reference image was obtained by using intelligent search from similar images in image database and the template fill was performed on the damaged regions by selecting appropriate content from reference image. Then, the restored boundary was smoothed by the texture information of both reference image and target image. Color transfer and colorization was implemented to make the appearance of repaired part in accordance with its surroundings. The experimental results show that this approach can obtain better results and keep smooth region boundaries in visual effect.
作者 杨苏 杨兆中
出处 《计算机应用》 CSCD 北大核心 2014年第6期1724-1726,1734,共4页 journal of Computer Applications
基金 教育部高等学校博士学科点专项科研基金资助项目(5121110001)
关键词 大规模图像修复 参考图像 图像检索 区域划分 颜色迁移 image inpainting of large-scale ruined region reference image image retrieval segmentation color transfer
  • 相关文献

参考文献13

  • 1BERTALMIO M, SAPIRO G, CASELLES V, et al. Image inpaint- ing[ C]// Proceedings of the ACM SIGGRAPH 2000. New York: ACM Press, 2000:417-424.
  • 2CRIMINISI A, PEREZ P, TOYAMA K. Region filling and object removal by exemplar-based image inpainting[ J]. IEEE Tranactions on Image Processing, 2004, 13(9) : 1200 - 1212.
  • 3LEE J, LEE D, PPARK R H. Robust exemplar-based inpainting al- gorithm using region segmentation[ J]. IEEE Transactions on Con- sumer Electronics, 2012, 58(2): 553-561.
  • 4LIU Y, CASELLES V. Exemplar-based image inpainting using mul-tiscale graph cuts[ J]. IEEE Transactions on Image Processing, 2013, 22(5) : 1699 - 1711.
  • 5翟东海,肖杰,鱼江,李同亮.基于自适应模板的图像修复算法[J].计算机应用,2013,33(10):2891-2894. 被引量:6
  • 6HAYS J, EFROS A A. Scene completion using millions of photo- graphs[ C]// Proceedings of the SIGGRAPH 2007. New York: ACM Press, 2007:87 -94.
  • 7KWATRA V, SCHODL A, ESSA I, et al. Graphcut textures: Im- age and video synthesis using graph cuts[ J]. ACM Transactions on Graphics, 2003, 22(3):277-286.
  • 8PEREZ P, GANGNET M, BLAKE A. Poisson image editing[ J]. ACM Transactions on Graphics, 2003, 22(3):313 -318.
  • 9陈骍,檀结庆.基于空间分布差异度的分块彩色图像检索方法[J].计算机应用,2012,32(6):1539-1543. 被引量:1
  • 10SWAIN M J, BALLAR D H . Color indexing [ J ] . International Journal of Computer Vision, 1991, 7(1) : 11 -32.

二级参考文献30

  • 1DATTA R, JOSHI D, LI JIA, et al. Image retrieval: Ideas, influ- ences, and trends of the new age[ J]. ACM Computing Surveys, 2008, 40(2): 1 -60.
  • 2MICHAEL S L, NICU S, CHABANE D, et al. Content-based multi- media information retrieval: state of the art and challenges[ J]. ACM Transactions on Multimedia Computing, Communication and Appli- cations, 2006, 2(1): I-19.
  • 3JEONG S, WON C S, GRAY R M. Image retrieval using color his- tograms generated by Gauss mixture vector quantization[ J]. Comput- er Vision and Image Understanding, 2004, 94(1/2/3) :44-66.
  • 4SAYKOL E, GUDUBAY U, ULUSOY O. A histogram-based ap- proach fi~r object-based query-by-shape-and-color in multimedia da- tabases[ J]. Image and Vision Computing, 2005, 23 (13) : 1170 - 1180.
  • 5RAFIEE G, DLAY S S, WOO L W. A review of content-based im- age retrieval[ C]//2010 7th Intenlational Symposium on Communi- cation Systems Networks and Digital Signal Processing. Piscataway: IEEE Press, 2010:775-779.
  • 6LI XUELONG. Image retrieval based on perceptive weighted color blocks[ J]. Pattern Recognition Letters, 2003, 24( 12): 1935 - 1941.
  • 7HSU W, CHUA T S, PUNG H K. An integrated color-spatial ap- proach to content-based image retrieval [ C]// Proceedings of the ACM Multimedia'95 Conference. New York: ACM Press, 1995:301 -313.
  • 8CHUA T, TAN K, OOI B. Fast signature-based color-spatial image retrieval[ C]//Proceedings of the International Conference on Multi- media Computing and Systems. Washington, DC: IEEE Computer Society, 1997:362 - 369.
  • 9STOTFINGER J, SEBE N, GEVERS T, et al. Colour interest points for image retrieval[ EB/OL]. [ 2011- 10- 15]. http://staff, science. uva. nl./- nicu/PUBS/PDF/20OT/CVWW07_paper, pdf.
  • 10FAUQUEUR J, BOUJEMAA N. Region-based image retrieval: fast coarse segmentation and fine color description[ J]. Journal of Vision Languages and Computing, 2004, 15(1) :69 -95.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部