期刊文献+

利用云模型的血细胞图像阈值化方法

Blood cell image thresholding method using cloud model
下载PDF
导出
摘要 经典统计阈值方法直接利用类方差构造最优阈值准则,具有一定的通用性,但在某些情况下缺乏实际应用的针对性。为了解决血细胞图像阈值化及白细胞核提取问题,提出了一种利用云模型的简单快速方法。该方法分别生成白细胞核和血细胞背景对应的云模型,利用各类云模型的超熵定义了新的阈值化准则,然后通过最大化该准则自动获取最优灰度阈值,最终完成血细胞图像二值化及白细胞核提取。实验结果表明,与Otsu法、最大熵法、最小误差法、最小类内方差和法以及最小极大类内方差法等方法相比,新方法更适合于血细胞图像分割,二值化效果好,白细胞核提取质量高,具有合理性和有效性。 The traditional statistical thresholding methods which directly construct the optimal threshold criterions by the class-variance have certain versatility, but lack the specificity of practical application in some cases. In order to select the optimal threshold for blood cell image segmentation and extract white blood cells nuclei, a simple and fast method based on cloud model was proposed. The method firstly generated the cloud models corresponding to white blood cells nuclei and blood cell image background respectively, and defined a new thresholding criterion by utilizing the hyper-entropy of cloud models, then obtained the optimal grayscale threshold by the maximization of this criterion, finally achieved blood cell image thresholding and white blood cells nuclei extraction. The experimental results indicate that, compared with the traditional methods including maximizing inter-class variance method, maximizing entropy method, minimizing error method, minimizing intra-class variance sum method, and minimizing maximal intra-elass variance method, the proposed method is suitable for blood cell image thresholding, and it is reasonable and effective.
作者 吴涛
出处 《计算机应用》 CSCD 北大核心 2014年第6期1765-1769,1797,共6页 journal of Computer Applications
基金 国家973计划项目(2012CB719903) 广东高校优秀青年创新人才培养计划项目(2012LYM_0092) 广东省自然科学基金资助项目(S2013040014926) 湛江师范学院博士科研专项(ZL1301)
关键词 细胞分割 云模型 图像阈值化 白细胞核提取 图像分割 cell segmentation cloud model image thresholding white blood cells nuclei extraction image segmentation
  • 相关文献

参考文献15

  • 1邹小林,冯国灿.融合视觉模型和最大类间方差的阈值分割算法[J].计算机应用,2013,33(3):670-673. 被引量:8
  • 2江亲瑜,李平,孙兰.最大类间方差算法在运动检测系统中的应用[J].计算机应用,2011,31(1):260-262. 被引量:13
  • 3SEZGIN M, SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation [ J]. Journal of Electronic Imaging, 2004, 13(1): 146-165.
  • 4OTSU N. A threshold selection method from gray-level histogram [ J]. IEEE Transactions on System, Man and Cybemetics, 1979, 9 (1):62 -66.
  • 5KAPUR J, SAHOO P, WONG A. A new method for graylevel pic- ture thresholding using the entropy of the histogram [ J]. Computer Graphics and Image Processing, 1985, 34( 1 1) : 273 -285.
  • 6KTITLER J, ILL1NGWORTH J. Minimum error thresholding [ J]. IEEE Transactions on System, Man and Cybernetics, 1986, 19(1) : 41 -47.
  • 7HOU Z, HU Q, NOWINSKI W. [ J]. Pattern Recognition Letters, On minimum variance thresholding 2006, 27(14) : 1732 - 1743.
  • 8李佐勇,刘传才,程勇,赵才荣.红外图像统计阈值分割方法[J].计算机科学,2010,37(1):282-286. 被引量:21
  • 9LID Y, LIU C Y, GAN W Y. A new cognitive model: cloud model [ J]. International Journal of Intelligent Systems, 2009, 24 (3) : 357 - 375.
  • 10贾顺平,毛保华.基于云推理的车辆跟驰模型CFCM研究[J].交通运输系统工程与信息,2007,7(6):67-73. 被引量:9

二级参考文献71

共引文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部