期刊文献+

局部鉴别分析驱动的红外与可见光图像协同目标跟踪 被引量:4

Infrared and Visible Fusion for Robust Object Tracking via Local Discrimination Analysis
下载PDF
导出
摘要 针对红外图像所含信息量少、可见光图像易受环境影响的问题,提出一种基于局部鉴别分析的红外与可见光图像多源信息协同跟踪的目标跟踪方法.从评估图像信息对目标和背景间的可区分性能角度出发引入线性鉴别分析理论,建立了局部区域目标背景间的可区分度函数;以此为基础实现了多源图像在特征层次上的自适应融合;最后将该融合理论嵌入到粒子滤波跟踪框架中,实现对目标的跟踪.实验结果表明,与采用单一图像信息的目标跟踪系统相比,该方法可对红外和可见光图像进行有效融合,实现对目标的稳健跟踪. The infrared images generally contain less information but the visible images are easily affected by environments.To address this problem,a local discrimination analysis based infrared and visible multi-source information cooperative tracking approach is presented in this paper.From the view of evaluating the image information's ability of distinguishing the object form background,the Fisher linear discrimination theory is introduced to design the discriminative function between the target and background in local regions.Based on this,the fusion of multi-source image is executed adaptively on the feature level.Finally,we incorporate the proposed fusion method into the particle filter tracking framework to achieve the object tracking.Experimental results demonstrates that,compared with the tracking system with single image source,the proposed algorithm can effectively fuse the infrared and visible images to reliably track the object.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第6期870-878,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61203272 41275027) 安徽省自然科学基金(10040606Q56 1308085MF82)
关键词 目标跟踪 局部鉴别分析 图像融合 粒子滤波 object tracking local discrimination analysis image fusion particle filter
  • 相关文献

参考文献4

二级参考文献37

  • 1XUE Jianru ZHENG Nanning ZHONG Xiaopin.Sequential stratified sampling belief propagation for multiple targets tracking[J].Science in China(Series F),2006,49(1):48-62. 被引量:6
  • 2Porikli P, Tuzel O, Meer P. Covarianee tracking using model update based on Lie algebra [C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2006 : 728-735.
  • 3Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5) : 56,1-577.
  • 4Tuzel O, Porikli F, Meer P. Region eovariance: a fast descriptor for detection and classification [C]//Proceedings of the 9th European Conference on Computer Vision. Berlin: Springer, 2006, 3954: 589-600.
  • 5Wu Y, Cheng J, Wang J Q, etal. Real-time visual tracking via incremental covarianee tensor learning [C] //Proceedings of the 12th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2009: 1631-1638.
  • 6Yang M, Wu Y, Hua G. Context-aware visual tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(7): 1195-1209.
  • 7Arsigny V, Fillard P, Pennec X, et al. Geometric means in a novel vector space structure on symmetric positive-definite matrices[J]. SIAM Journal on Matrix Analysis and Applications, 2006, 29(1): 328-347.
  • 8Pennec X, Fillard P, Ayache N. A Riemannian framework for tensor computing [J]. International Journal of Computer Vision, 2008: 66(1): 41-66.
  • 9Miezianko R. Terravic research infrared database [OL]. [ 2011-03-08]. http://www, terravic, corn/research/motion. htm.
  • 10Ralph J and Stocks N. Fusion of low bit-depth images for battle damage indication [C]. Proceedings of the 13th IEEE Conference on Information Fusion (FUSION), Edinburgh, 2010: 1-6.

共引文献49

同被引文献45

  • 1赵鹏,浦昭邦,张田文.一种新的红外与可见光图像融合与跟踪方法[J].光电工程,2005,32(2):37-40. 被引量:18
  • 2PengNingsong,YangJie,LiuErqi.Model update mechanism for mean-shift tracking[J].Journal of Systems Engineering and Electronics,2005,16(1):52-57. 被引量:3
  • 3沈叶健,徐守时.一种有效的可见光图像中水坝目标的识别方法[J].计算机应用,2006,26(8):1972-1974. 被引量:7
  • 4Zhao J,Zhou Q, Chen Y, et al. Fusion of visible and infrared images using saliency analysis and detail preserving based image decomposition [ J ]. Infrared Physics & Technology, 2013,56 : 93 - 99.
  • 5Bhatnagar G, Wu Q M J, Liu Z. Human visual system inspired multi-modal medical image fusion framework [ J ]. Expert Systems with Applications,2013,40 (5) : 1708 - 1720.
  • 6Grossmann A, Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape [ J ]. SIAM Journal on Mathematical Analysis, 1984,15 (4) :723 - 736.
  • 7Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11 (7) : 674 - 693.
  • 8Do M N, Vetterli M. Contourlets: a directional muhiresolution image representation [ C 3. International Conference on Image Processing,2002,1 : 357 - 360.
  • 9Da Cunha A L, Zhou J, Do M N. The nonsubsampled contourlet transform: theory, design, and applications [ J ]. IEEE Transactions on Image Processing,2006,15 ( 10 ) :3089 - 3101.
  • 10李钢,赵敏志.基于非采样eontourlet变换的图像融合技术研究[D].合肥:合肥工业大学,2009.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部