期刊文献+

基于协同训练的低空运动平台动态人物阴影检测 被引量:2

Detecting Dynamic Human Shadow Based on Low Altitude Moving Platform by Co-training
下载PDF
导出
摘要 针对现有视频监控中人物阴影检测大都采用背景减法,难以实现低空运动平台下的动态检测问题,提出一种针对低空运动平台的动态人物阴影检测方法.在改进现有的3种室外人物阴影像素特征的基础上,提出一种亮度反差区域特征,并通过实验给出了其优化组合模式;基于像素与区域特性的独立性构建双视图分类器,设计了与之相适应的半监督协同训练策略;最后针对实时处理需求,提出了通过随机采样改善学习效率、利用支持向量机解决小样本学习问题的加速方案.实际低空运动平台下的实验结果表明,该方法具有较高的人物阴影检测率与较好的算法鲁棒性,可有效地解决低空运动平台下的高质量动态人物阴影检测问题. In the area of video-monitoring,background subtraction method is widely adopted to detect human shadows,but it is difficult to achieve dynamic detection for the low altitude moving platforms.In order to resolve the problem of dynamic human shadow detection onboard of low altitude moving platform,a novel method is proposed in this paper.In this method,according to the characteristics of the outdoor human shadow,three kinds of pixel based features are improved,a kind of area based feature named "luminance contrast" is proposed,and further more,an optimized combination of those features is given experimentally.Secondly,according to the independence between pixel based and area based features,a two-view classifier based on co-training theory and a semi-supervised training strategy for this classifier are established.And then,the random sampling theory is adopted for improving the training efficiency and the support vector machine has also been adopted to solve the problem of small samples learning.Some experimental results show that this proposed method is characterized by high shadow detection rate and fine robustness,can effectively solve the problem of dynamic human shadow detection for low altitude moving platforms.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第6期903-913,共11页 Journal of Computer-Aided Design & Computer Graphics
基金 国家科技支撑计划(2012BAH31B01) 国家自然科学基金(61171117)
关键词 低空运动平台 动态人物阴影检测 阴影像素和区域特征 协同训练 low altitude moving platform dynamic human shadow detection pixel and area based shadow features co-training
  • 相关文献

参考文献14

  • 1Blum A, Mitchell T. Combining labeled and unlabeled data with co-training [C] //Proceedings of the llth Annual Conference on Computational Learning Theory. New York: ACM Press, 1998:92-100.
  • 2Zhou Z H, Li M. Tri-training: exploiting unlabeled data using three classifiers [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11) : 1529-1541.
  • 3Stoica A. Towards recognition of humans and their behaviors from space and airborne platforms: extracting the information in the dynamics of human shadows [C] //Proceedings of ECSIS Symposium on Bio-inspired Learning and Intelligent Systems for Security. Los Alamitos: IEEE Computer Society Press, 2008:125-128.
  • 4Zhang W, Fang X Z, Yang X K, etal, Moving cast shadows detection using ratio edge [J]. IEEE Transactions on Multimedia, 2007, 9(6): 1202-1214.
  • 5刘晋苏,任沁源,韩波,李平.基于微型无人机平台的航拍动态阴影检测[J].武汉大学学报(信息科学版),2010,35(11):1275-1278. 被引量:3
  • 6刘宏,李锦涛,刘群,钱跃良,李豪杰.融合颜色和梯度特征的运动阴影消除方法[J].计算机辅助设计与图形学学报,2007,19(10):1279-1285. 被引量:24
  • 7Wang W, Zhou Z H. Analyzing co-training style algorithms [M] //Lecture Notes in Computer Science. Heidelberg: Springer, 2007, 4701:454-465.
  • 8Joshi A J, Papanikolopoulos N P. Learning to detect moving shadows in dynamic environments [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30 (11): 2055-2063.
  • 9Prati A, Mikic I, Trivedi M M, et al. Detecting moving shadows: algorithms and evaluation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (7): 918-923.
  • 10朱庆,徐胜华,韩李涛.基于D-S证据理论的彩色航空影像阴影提取方法[J].自动化学报,2007,33(6):588-595. 被引量:27

二级参考文献52

共引文献50

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部