期刊文献+

类Delaunay三角剖分的多分叉血管建模方法 被引量:1

A Delaunay Triangulation-Like Method for Modeling Multi-furcating Blood Vessel
下载PDF
导出
摘要 针对建立三维血管矢量表面模型时血管树存在复杂分叉和管径狭小的问题,提出一种高效可靠的矢量建模方法.首先将血管树骨架线从血管体素中提取出来并重组为各条单分支,在此基础上,结合中间点的最优截面管径重建出各个单分支管道表面;然后利用类Delaunay三角剖分对每个分叉区域进行表面过渡拼接,将各个分支表面融合成一个符合CGAL标准的闭合多面体;最后通过对模型表面进行曲面细分,得到一个逼真细腻的三维模型.该方法在重建分叉区域时充分利用了分支之间的"互吃"关系,计算开销小.实验结果表明,文中方法效率高,重建模型准确,优于已有的建模方法. Targeting at the possibly existing complex furcations and narrow tubes which are problematic in reconstructing vectorial surface of blood vessels,we introduce an efficient and reliable vector-based modeling method.First,the skeletal representation of vascular volume is extracted from its segmented volume and further converted into an adaptive one constituted by a number of single lines,whose optimal radii are computed simultaneously upon continuous center points.And then based on this adaptive skeleton and the optimal radii,we reconstruct tubular surface for each single line.And for each furcating part,we use our Delaunay triangulation-like method to merge the surfaces of its branching single lines into a closed one which meets the CGAL standard.Finally,the whole surface is further subdivided to provide an exquisite and accurate model.The Delaunay triangulation-like method takes full advantage of the eating-each-other relationships among these single lines with small computation overhead required.The experimental outcomes show that our method is effective and the resulted model is accurate,surpassing the pre-existing vector-based methods.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第6期973-982,共10页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金重大项目(61190122) 国家科技支撑计划(2012BAI 06B01)
关键词 骨架线 多分叉 互吃 类Delaunay三角 曲面细分 skeleton line multi-furcating branch eating each other Delaunay triangulation-like surface subdivision
  • 相关文献

参考文献3

二级参考文献23

  • 1秦绪佳,王青,鲍虎军.基于散乱点的增量式曲面逼近[J].计算机辅助设计与图形学学报,2006,18(9):1408-1413. 被引量:2
  • 2[1]Lorensen W,Cline H.Marching cubes:a high resolution 3-D surface construction algorithm[J].in Pros.SIGGRAPH 98,1987,21:163-169.
  • 3[2]Taylor C A,Draney M T,Ku J P,et al.Predictive medicine:computational techniques in therapeutic decision-making[J].Comput Aided Surg,1999,4(5):231-247.
  • 4[3]Chen X,Chui C,Cai Y,et al.Human vascular modeling for computer based medical simulation[A].in Proc.10th Int.Conf Biomed Eng[C].Singapore,2000.311-312.
  • 5[4]Gregory J A,Hahn J M.Geometric continuity and convex combination patches[J].Comput.Aided Geometric Design,1997,4:79-89.
  • 6[5]O'Donnell T,GuptaA,Boult T.A new model for the recovery of cylindrical structures from medical image data[A].in Joint Conf.Comp.Vision,Vir.Reality and Robotics in Medicine and Robotics,and Comp.-Assisted Surgery[C].1997.223-232.
  • 7[6]Zhou Y,Kaufman A,Toga A W.Three-dimensional skeleton and centerline generation based on an approximate minimum distance field[J].The Visual Computer,1998,14:303-314.
  • 8[7]Cornea N D,Silver D,Min P.Curve-skeleton applications[J].Visualization,2005.VIS 05.IEEE23-28 Oct.2005,95-102.
  • 9[9]Selle D,Preim B,Schenk A,et al.Analysis of vasculature for liver surgical Planning[J].IEEE transactions on medical imaging,2002,(21):11
  • 10[10]Wahle A,Mitchell S C,Ramaswamy S D,et al,Four-dimensional coronary morphology and computational hemodynamics[A].In Medical Imaging 2001:ImageProcessing[C].2001.4322:743-754,

共引文献12

同被引文献15

  • 1程进三,高小山.构造两个曲面的拼接曲面[J].工程图学学报,2005,26(1):39-44. 被引量:14
  • 2徐岗,汪国昭.PDE曲面的Bézier逼近[J].软件学报,2007,18(11):2914-2920. 被引量:4
  • 3HOFFMANN C, HOPCROFT J. Quadratic blending surfaces[ J]. Computer Aided Design, 1986, 18(1) : 301 - 306.
  • 4BOHUMIR B, BERT J, LAVICKA M, et al. Blends of canal sur- faces from polyhedral medial transform representations [ J]. Comput- er Aided Design, 2011, 43(11) : 1477 - 1484.
  • 5GUAN D, LI Z, CHANG Y, et al. Wire-frame method for blending surface design[ J]. Proceedings of the National Science Council, Re- public of China, Part A: Physical Science and Engineering, 1999, 23(1) :20 -30.
  • 6CHENG J. Blending quadric surfaces via base curve method[ C]// Proceedings of ASCM 2003. Singapore: World Scientific, 2003:77 -86.
  • 7GALBRAITH C, MACMURCHY P, WYVILL B. BlobTree trees [ C]// Proceedings of the 2004 Computer Graphics International. Piscataway: IEEE Press, 2004:78-85.
  • 8WARREN J. Blending 'algebraic sufaces[ J]. ACM Transactions on Graphics, 1989:263 - 278.
  • 9KIM K. Leonardo's formula explains why trees don't splinter[ EB/ OL]. [ 2014-10-10]. http://news, seienccmag, org/physics/ 2011 / 11/leon ardos -formula-explains-why-trecs-dont -splinter.
  • 10李耀辉.基于结式方法的代数曲面拼接[J].计算机工程与应用,2008,44(29):17-20. 被引量:7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部