期刊文献+

结合包光滑性的半监督多示例核学习方法

Semi-Supervised Multi-Instance Kernel Learning Algorithm with Bag-Level Smoothness
下载PDF
导出
摘要 以往半监督多示例学习算法常把未标记包分解为示例集合,使用传统的半监督单示例学习算法确定这些示例的潜在标记以对它们进行利用。但该类方法认为多示例样本的分类与其概率密度分布紧密相关,且并未考虑包结构对包分类标记的影响。提出一种基于包层次的半监督多示例核学习方法,直接利用未标记包进行半监督学习器的训练。首先通过对示例空间聚类把包转换为概念向量表示形式,然后计算概念向量之间的海明距离,在此基础上计算描述包光滑性的图拉普拉斯矩阵,进而计算包层次的半监督核,最后在多示例学习标准数据集和图像数据集上测试本算法。测试表明本算法有明显的改进效果。 In previous semi-supervised multi-instance learning, unlabeled bags are often decomposed as set of instances, and then normal single-instance semi-supervised learning algorithms are adopted to make use of such unlabeled data samples. However, these algorithms only take instance-level density distribution into consideration, and have little to do with structure of individual bags. We propose a bag-level semi-supervised multi-instance kernel learning algorithm, which directly makes use of unlabeled bags in learning procedure. A representation transformation is applied to generate concept-vector representation of bags. The proposed algorithm is tested on both multi-instance learning benchmark data set Musk1 / Musk2, and Corel Image 2000 data set. The evaluation results indicate the effectiveness of the proposed algorithm.
作者 潘强
出处 《自动化与信息工程》 2013年第5期1-6,共6页 Automation & Information Engineering
基金 广东省科技项目(2011B04020000 2012A010701013) 广州市科技项目(11A31090341 11A53010726 2011Y5-00004)
关键词 多示例学习 半监督学习 多示例核 包光滑性 图拉普拉斯 核映射 Multi-Instance Learning Semi-Supervised Learning Multi-Instance Kernel Bag-Level Smoothness Graph Laplacian Kernel Mapping
  • 相关文献

参考文献14

  • 1Rahmani R, Goldman S A. MISSL: Multiple-instance semi-supervised learning [C]//Proc 23rd Intl. Conf. Mach. Leam. ACM, New York, NY, USA, 2006: 705-712.
  • 2Chen Y, Wang J Z. Image categorization by learning and reasoning with regions [J]. J. Mach. Learn. Res., 2004, 5: 913-939.
  • 3Zhu X, Ghahramani Z, Lafferty J. Semi supervised learning using gaussian fields and harmonic functions [C]//Proc 20th Intl. Conf. Mach. Learn. ACM, New York, NY, USA, 2003: 912-919.
  • 4Yangqing Jia, Changshui Zhang. Instance-level Semisupervised Multiple Instance Learning [C]//Proc 23rd Intl. Conf. AAAI. AAAI Press, 2008: 640-645.
  • 5M Belkin, P Niyogi, V Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples [J]. J. Mach. Leam. Res., 2006,7:2399-2434.
  • 6Cucker, F. and Smale, S. On the mathematical foundations of learning [J]. Bull. Amer. Math. Soc. (N.S.), 2002, 39: 1-49.
  • 7Vikas Sindhwani, Partha Niyogi, and Mikhail Belkin. Beyond the point cloud: from transductive to semi-supervised learning [C]//Proc 22th Intl. Conf. Mach. Learn., ACM, New York, NY, USA, 2005: 824-831.
  • 8Gartner T, Flach P A, Kowalczyk A, et al. Multi-instance kemels[C]//Proc 19th Intl. Conf. Mach. Learn. Morgan Kaufirmnn Publishers Inc., San Francisco: CA, USA, 179-186.
  • 9Zhou Zhi-Hua, Sun Yu-Yin, Li Yu-Feng. Multi-instance learning by treating instances as non-I.I.D, samples[C]//Proc 26th Intl. Conf. Mach. Learn. Montreal, Quebec, Canada, 2009 1249-1256.
  • 10James Foulds, Eibe Frank. A Review of Multi-Instance Learning Assumptions[J]. Knowledge Engineering Review, 2011, 25(1):1-25.

二级参考文献15

  • 1Dietterich T G, Lathrop R H, Lozano-Perez T. Solving the multiple-instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997,89 (1/2) : 31-71.
  • 2Zhou Zhi-hua. Multi-Instance Leaming: A Survey[R]. CS, Nanjing University, 2004.
  • 3Jia Yang-qing, Zhang Chang-shui. Instance-level Semisupervised Multiple Instance Learning[C]//Proceedings of the 23rd Intl. Conf. AAAI, 2008 : 640-645.
  • 4Rahmani R, Goldman S A. MISSL.. Multiple-instance semi-supervised learning[C]// Proceedings of the 23rd Intl. Conf. ICML, 2006 : 705-712.
  • 5Maron O, Lozano-Perez T. A framework for multiple-instance learning[J]. Neural Information Processing Systems, 1998.
  • 6Gartner T, Flach P A, Kowalczyk A, et al. Multi-instance kernels[C]//Proceedings of the 19th Intl. Conf. ICML, 2002 : 179- 186.
  • 7Sindhwani V, Niyogi P,Belkin M. Beyond the point cloud: from transductive to semi-supervised learning[C]//Proceedings of the 22nd Intl. Conf. ICML, 2005 : 824-831.
  • 8Zhou Zhi-hua, Sun Yu-yin, Li Yu-feng. Multi-instance learning by treating instances as non-I. I. D. samples[C]/// Proceedings of the 26th Intl. Conf. ICML,2009:1249-1256.
  • 9Zhu X, Ghahramani Z, Lafferty J. Semisupervised learning using gaussian fields and harmonic functions[C]// Proceedings of the 20th Intl. Conf. ICML, 2003.
  • 10Zhou Zhi-hua, Xu Jun-ming. on the relation between multi-instance learning and semi-supervised learning[C]// Proceedings of the 24th Intl. Conf. ICML,2007: 1167-1174.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部