期刊文献+

Landsat_8多光谱波段纹理对叶面积指数的影响分析 被引量:4

Impact of Multispectral Bands Texture on Leaf Area Index Using Landsat_8
下载PDF
导出
摘要 以北京密云县为例,分析植被纹理特征与叶面积指数的相关性,为叶面积指数模型引入纹理特征提供参考。利用Landsat_8影像多光谱波段间的相关性,将相关性最小的波段4、波段5分别与全色波段融合后提取纹理特征,研究融合后纹理特征对叶面积指数的影响。结果表明,融合后纹理特征与叶面积指数的相关性多数显著高于融合前,其中针叶林融合后纹理特征与叶面积指数的相关系数比阔叶林的高。但在研究阔叶林波段5融合后的纹理值对叶面积指数的影响中,其相关性却比融合前的低。说明融合后的纹理值虽然对叶面积指数模型的构建具有重要作用,但也需考虑不同的林分、波段对叶面积指数的影响。 The correlation between forest texture features and leaf area index was analyzed and discussed to provide a reference for the introduction of texture features into leaf area index model in Miyun County of Beijing.Through correlation analysis among multiple spectral bands of Landsat_8 image,the band 4 and band 5 which had a minimum correlation were combined with panchromatic band to extract texture features.Then the influence of texture features after fusion on leaf area index was discussed.The results showed that the correlation of texture features after fusion and leaf area index was significantly higher than that of texture features before fusion and leaf area index.Furthermore,the correlation coefficient of coniferous forest after fusion was larger than that of broadleaf forest after fusion.However,with the research that texture feature of band 5 after fusion had an effect on leaf area index in broadleaf forest,their correlation was lower than that of before fusion.It was illustrated that texture value after fusion played an important role in the construction of leaf area index model on the whole,but different stand and bands were also considered in the influence of leaf area index.
出处 《地理与地理信息科学》 CSCD 北大核心 2014年第3期42-45,共4页 Geography and Geo-Information Science
基金 国家"863"计划课题"数字化森林资源监测技术"(2012AA102001)
关键词 纹理特征 多光谱波段 叶面积指数 Landsat_8影像 texture features multispectral band leaf area index Landsat_8 image
  • 相关文献

参考文献19

  • 1CHEN J M, BLACK T A. Defining leaf area index for non flat leaves[J]. Plant, Cell and Environment, 1992,15:42 1-429.
  • 2程武学,潘开志,杨存建.叶面积指数(LAI)测定方法研究进展[J].四川林业科技,2010,31(3):51-54. 被引量:35
  • 3汪小钦,江洪,傅银贞.森林叶面积指数遥感研究进展[J].福州大学学报(自然科学版),2009,37(6):822-828. 被引量:11
  • 4孙君顶,马媛媛.纹理特征研究综述[J].计算机系统应用,2010,19(6):245-250. 被引量:41
  • 5LEE J H, PHILPOT W D. Spectral texture pattern matching:A classifier for digital imagery[J]. IEEE Transactions on Geosei- ence and Remote Sensing,1991,29(4):545- 554.
  • 6曹庆先,徐大平,鞠洪波.基于TM影像纹理与光谱特征的红树林生物量估算[J].林业资源管理,2010(6):102-108. 被引量:16
  • 7FRANKLIN S E, PEDDLE D R. Spectral texture for improved class discrimination in complex terrain[J].International Journal of Remote Sensing, 1989,10 :1437- 1443.
  • 8MARCEAU D J, HOWARTH P J, DUBOIS J M M, et al. Eval uation of the grey-level matrix method for land- cover classification using SPOT imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990,28(4):513-519.
  • 9AUGUSTEIJN M F, CLEMENS L E, SHAW K A. Perform- ance evaluation of texture measures for ground cover identifica- tion in satellite images by means of a neural network classifier [J]. IEEE Transactions on Geoscience and Remote Sensing, 1995,33(3) :616-626.
  • 10FRANKLIN S E, HALL R J, MOSKAL L M, et al. Incorpora- ting texture into classification of forest species composition from airborne multispectral images[J]. International Journal of Remote Sensing, 2000,21 : 61 - 79.

二级参考文献199

共引文献174

同被引文献54

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部