期刊文献+

基于GRNN与BPNN的二维向量模式分类对比研究 被引量:10

Comparative study of two dimensional vectors pattern classification based on GRNN and BPNN
下载PDF
导出
摘要 为了研究广义回归神经网络(GRNN)和标准BP神经网络(BPNN)在解决二维向量的模式分类问题时的性能差异,分别构建了GRNN分类模型和标准BPNN分类模型,详细阐述了2种分类模型的建立方法,并对所建立的2种分类模型进行训练和泛化能力测试。仿真结果表明,GRNN模型的人为调节参数少,构建方法简单,不易陷入局部极小值,在解决相同的二维向量模式分类问题时,GRNN模型比BPNN模型具有更高的分类精度、更快的收敛速度、更适合于解决二维向量的模式分类问题。 To study the differences between GRNN and standard BPNN in pattern classification of two dimensional vectors, classification models based on GRNN and standard BPNN are established respectively. The establishment methods of the two models are illustrated in detail. The two models are trained and their generalization abilities are tested. The simulation result shows that GRNN has less artificial adjustment parameters, simpler establishment method and it is not easy to fall into local minimum. When applied to the same pattern classification problem of two dimensional vectors, GRNN has higher classification accuracy and faster convergence speed than BPNN and it is more suitable for solving the problem of pattern classification of two dimensional vectors.
机构地区 渤海大学工学院
出处 《国外电子测量技术》 2014年第5期56-58,79,共4页 Foreign Electronic Measurement Technology
基金 国家自然科学基金(61104071)资助项目
关键词 广义回归神经网络 BP神经网络 二维向量 模式分类 收敛速度 泛化能力 generalized regression neural network BP neural network two dimensional vector pattern classification convergence speed generalization ability
  • 相关文献

参考文献14

二级参考文献90

共引文献159

同被引文献126

  • 1黄南天,杨学航,蔡国伟,宋星,陈庆珠,赵文广.采用非平衡小样本数据的风机主轴承故障深度对抗诊断[J].中国电机工程学报,2020,40(2):563-574. 被引量:31
  • 2黄建明.贝叶斯网络在学生成绩预测中的应用[J].计算机科学,2012,39(S3):280-282. 被引量:30
  • 3董立新,肖登明,刘奕路.Insulation fault diagnosis based on group grey relational grade analysis method for power transformers[J].Journal of Southeast University(English Edition),2005,21(2):175-179. 被引量:5
  • 4石知机,汪国才,李应江.炉气分析终点控制技术在马钢转炉的应用[J].钢铁,2007,42(4):24-26. 被引量:18
  • 5Pawlak Z.Rough set theory for intelligent industrial applications[C].Proceedings of the Second International Conference on intelligent Processing and Manufacturing of Materials,1999,1:37-44.
  • 6XU L, LI W, ZHANG M, etal. A model of Basic Oxygen Furnace (BOF) end-point prediction based on spectrum information of the furnace flame with Support Vector Machine (SVM) [ J]. Optik-In- teruational Journal for Light and Electron Optics, 2011, 122(7): 594 - 598.
  • 7LIU H, WANG B, XIONG X. Basic oxygen furnace steelmaking end-point prediction based on computer vision and general regression neural network [ J]. Optik-Intemational Journal for Light and Elec- tron Optics, 2014, 125(18): 5241-5248.
  • 8GADELMAWLA E S. A vision system for surface roughness charac- terization using the gray level co-occurrence matrix [ J]. NDT&E In- ternational, 2004, 37(7): 577-588.
  • 9MENDOZA F, VALOUS N A, ALLEN P, et al. Analysis and classification of commercial ham slice image using directional frac- tal dimension features [ J]. Meat Science, 2009, 81 (2) : 313 - 320.
  • 10PALM C. Color texture classification by integrative matrices [ J]. Pattern Recognition, 2004, 37(5) : 965 - 976.

引证文献10

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部