期刊文献+

基于图像集匹配(ISM)的正则化最近点法在视频人脸识别中的应用

Application of Regularized Nearest Points Algorithm Based on ISM in Video Face Recognition
下载PDF
导出
摘要 针对视频人脸识别中传统的图像集算法受光照、表情、姿态及遮掩等变化而影响识别性能的问题,提出了一种图像集匹配的正则化最近点算法。首先,将图库图像集和探针图像集建模成正则化仿射包,利用迭代器自动确定两个图像集间的正则化最近点;然后,利用最近子空间分类器最小化正则化最近点;最后,根据正则化最近点之间的欧氏距离及结构计算RNP集之间的距离,并利用最近邻分类器完成人脸识别。在Honda/UCSD、CMU Mobo和YouTube三大视频人脸数据库上的实验验证了所提算法的有效性及可靠性,实验结果表明,相比其他几种图像集人脸识别算法,所提算法取得了更好的识别效果,同时,大大减少了训练及测试总完成时间。 The recognition performance of traditional image set face recognition algorithms is impacted by variation of illustration,expression,pose and occlusion seriously in video,for which regularized nearest points algorithm based on image sets matching is proposed. Firstly,gallery image sets and probe image sets are modeled as regularized affine hulls,and iterator is used to conform regularized nearest points between the two sets. Then,recent subspace classifier is used to minimize the regularized nearest points. Finally,distance between RNP sets is calculated by Euclidean distance and structure of RNP and nearest neighbor classifier is used to finish face recognition. The effectiveness and reliability of proposed algorithm has been verified by experiments on the three video face databases Honda / UCSD、CMU Mobo and YouTube. Experimental results show that proposed algorithm has better recognition efficiency,less training time and testing time than several face recognition algorithms based on image sets.
作者 杨天朋 唐娴
出处 《科学技术与工程》 北大核心 2014年第15期212-218,共7页 Science Technology and Engineering
基金 国家自然科学基金(61170035) 中央高校基本科研业务费科研专项项目(CDJZR10180016)资助
关键词 视频人脸识别 正则化最近点 正则化仿射包 图像集匹配 最近邻分类器 video face recognition regularized nearest points regularized affine hull image set matching nearest neighbor classifier
  • 相关文献

参考文献15

  • 1严严,章毓晋.基于视频的人脸识别研究进展[J].计算机学报,2009,32(5):878-886. 被引量:84
  • 2许江涛.多姿态人脸识别研究.南京:东南大学,2006.
  • 3常俊彦,达飞鹏,蔡亮.基于特征融合的三维人脸识别[J].东南大学学报(自然科学版),2011,41(1):47-51. 被引量:9
  • 4Wang T, Shi P. Kernel grassmannian distances and discriminant analysis for face recogntion from image sets, Pattern Recognition Let- ters, 2009; 30(13) : 1161-1165.
  • 5晓莉,达飞鹏.基于排除算法的快速三维人脸识别方法[J].自动化学报,2010,36(1):153-158. 被引量:32
  • 6刘忠宝,潘广贞,赵文娟.流形判别分析[J].电子与信息学报,2013,35(9):2047-2053. 被引量:13
  • 7Wang R, Shan S, Chen X, et al. Manifold-manifold distance with application to face recognition based on image set. IEEE Conference on Computer Vision and Pattern Recognition, Columbus : ltats-Unis, 2008 : 1 -8.
  • 8Wang R, Guo H, Davis L S, et al. Covariance discriminative learn- ing: a natural and efficient approach to image set classification. 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , Columbus : ltats-Unis, 2012 : 2496-2503.
  • 9侯书东.基于相关投影分析的特征提取研究及在图像识别中的应用.南京:南京理工大学,2012.
  • 10Cevikalp H, Triggs B. Face recognition based on image sets. 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco: ltats-Unis, 2010 : 2567-2573.

二级参考文献138

  • 1Chowdhury A, Chellappa R. Face reconstruction from monocular video using uncertainty analysis and a generic model.Computer Vision and Image Understanding, 2003, 91 (1) : 188-213
  • 2Choudhury A, Clarkson B, Jebara T, Penland A. Multimodal person recognition using unconstrained audio and video// Proceedings of the Conference on Audio- and Video-based Biometric Person Authentication. Washington D. C, 1999: 176-180
  • 3Zhang Z Y, Liu Z C, Adler D, Cohen M F, Hanson E, Shan Y. Robust and rapid generation of animated faces from video images: A model-based modeling approaeh. International Journal of Computer Vision, 2004, 58(2) : 93-119
  • 4Zhou X, Bhanu B. Integrating face and gait for human recognition at a distance in video. IEEE Transactions on Systems, Man and Cybernetics, Part B, 2007, 37(5):1119-1137
  • 5JingXY, Yao Y F, Zhang D, YangJ Y, Li M. Face and palmprint pixel level fusion and kernel DCV-RBF classifier for small sample biometric recognition. Pattern Recognition, 2007, 40(11): 3209-3324
  • 6Yan Y, Zhang Y J. Multimodal biometrics fusion using correlation filter bank//Proceedings of the 19th IAPR International Conference on Pattern Recognition. Tampa, 2008, MoBTT. 3(1-4)
  • 7McKenna S, Gong S, Raja Y. Face recognition in dynamic scenes//Proceedings of the British Machine Vision Conference. Colchester, 1997: 140-151
  • 8Park U, Jain A K, Ross A. Face recognition in video: Adaptive fusion of multiple matchers//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, 2007:1-8
  • 9Wolf L, Shashua A. Kernel principal angles for classification machines with applications to image sequence interpretation//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Madison, 2003:635-642
  • 10Fan W, Yeung D Y. Locally linear models on face appearance manifolds with application to dual-subspace based classification//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York, 2006: 1384- 1390

共引文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部