期刊文献+

基于集合卡尔曼滤波的潜水动态预测方法 被引量:7

Application of ensemble Kalman filter to phreatic water flow
原文传递
导出
摘要 将集合卡尔曼滤波(EnKF)方法拓展至补给条件下潜水流动的数据同化问题,通过同化水位、水力传导度和降雨补给等测量数据来更新模型状态、反演模型参数,探讨了在不同补给条件下测量数据对水力传导度和降雨入渗补给系数反演的影响,分析了不同类型测量数据在同化中的作用.结果表明:EnKF方法可以通过动态的测量数据改善对地下水模型参数的估计,方法在降雨补给量较大条件下可以取得更好的同化效果,说明在雨季等地下水运动变动剧烈时的测量数据价值更高,有长期水位动态测量数据时,可以通过水位观测值有效地反演出水力传导度和降雨入渗补给系数. The data assimilation method based on ensemble Kalman filter(EnKF) is applied to solve the two-dimensional saturated groundwater flow problem. The influence of precipitation recharge is analyzed. The interaction between different types of observations and state variables is studied. The results show that the EnKF method can effectively improve the estimation of groundwater model parameters and the method performs better under higher rainfall supply. The saturated hydraulic conductivity Ks of the soil and subrainfall infiltration coefficient k can be effectively estimated with the availability of new water head observations H.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2014年第3期324-331,共8页 Engineering Journal of Wuhan University
基金 国家自然科学基金项目(编号:51079101 42072189 51009110) 973课题(编号:2010CB42880204) 中央高校基本科研业务费专项资金(编号:2012206020216)
关键词 潜水 降雨补给 空间变异 集合卡尔曼滤波 数据同化 phreatic water rainfall recharge spatial variability ensemble Kalman filter data assimilation
  • 相关文献

参考文献19

  • 1吴晓玲,王船海.基于卡尔曼滤波的水动力模型实时校正方法[J].武汉大学学报(工学版),2008,41(3):5-8. 被引量:5
  • 2Evensen G. Sequential data assimilation with a nonlin- ear quasigeostrophic model using Monte-Carlo methods to forecast error statistics [J].Geophysical Research, 1994, 99(C5) :10143-10162.
  • 3Verlaan M, Heemink A W. Nonlinearity in data as- similation applications; a practical method for analysis [J]. Month Weather Rev, 2001,129 : 1578-1589.
  • 4Naevdal G, Johnsen L, Aanonsen S, et al. Reservoir monitoring and continuous model updating using en- semble Kalman filter[J]. SPE, 2005, (10): 66-74.
  • 5Evensen G. The ensemble Kalman filter., theoretical formulation and practical implementation [J]. Ocean Dynam,2003,(53) : 343-367.
  • 6Chen Y, Oliver D S. Ensemble-based closed-loop opti mization applied to Brugge Field[J]. SPE Reservorir E- valuation & Engineering, 2010,(13): 56-71.
  • 7张学峰,黄大吉,章本照,童元正.集合数据同化方法的发展与应用概述[J].海洋学研究,2007,25(1):88-94. 被引量:9
  • 8Huang C, Li X, Lu L, Gu J. Experiments of one-di- mensional soil moisture assimilation system based on ensemble Kalman filter [ J ]. Remote Sens Environ, 2008,112(3) : 888-900.
  • 9Chen Y, Oliver D S. Cross-covariances and localization for EnKF in multiphase flow data assimilation [J]. Comput Geosei. ,2009,14(4) : 579-601.
  • 10Zeng L, Zhang D. A stochastic collocation based Kal- man filter for data assimilation[J]. Computational Ge- osciences,2010, 14(4): 721-744.

二级参考文献77

共引文献60

同被引文献78

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部