期刊文献+

面向P2P网络流识别的改进主动学习机制

Improved Active Learning Mechanism Facing P2P Network Traffic Identification
下载PDF
导出
摘要 针对被动机器学习在P2P网络流识别中需要大量标记训练数据的问题,提出一种改进的主动学习机制,并将其与SVM分类模型相结合运用到P2P网络流识别。在采用锦标赛方法对未标记样本筛选过程中,引入样本差异性概念以避免标记样本同化而导致主动学习的早熟问题;在通过动态阈值调节因子加快主动学习收敛速度的同时,加入过拟合样本过滤策略以增强分类模型的泛化能力。理论分析和实验结果表明,该机制能有效提高未标记样本的利用率,避免主动学习可能产生的早熟收敛和过学习现象,提高P2P网络流识别精度。 In P2P network traffic identification, aiming to such the problems that passive machine learning needs a lot of labeled training data, proposes an active learning method and uses it in P2P network traffic identification. In the course of selecting samples using tournament method, introduces sample difference conception to avoid premature convergence because of similarity of labeled samples; based on regulatory factor of dynamic threshold speeding of active learning, adds mechanism for filtering over fitting samples to increase generalization capability of classifying model. Analysis and simulation show that the mechanism can effectively raise the utilization rate of unlabeled samples, avoid the phenomenon that premature convergence and overfitting probably appear to improve the accuracy rate of P2P network traffic identification.
作者 毕孝儒
出处 《现代计算机》 2014年第8期3-6,15,共5页 Modern Computer
关键词 P2P网络流识别 主动学习 动态阈值 过拟合样本 P2P Network Traffic Identification Active Learning Dynamic Threshold Over Fitting Samples
  • 相关文献

参考文献12

  • 1Wang R,Liu Y,Yang Y,et al.Solving the App-level Classification Problem of P2P Traffic Via Optimized Support Vector Machine[C].Proc of the 6th Int.Conf.on Intelligent Systems Design and Applications.Piscataway,NJ:IEEE,2006:534-539.
  • 2Zuev D,Moore A.Traffic Classification Using Statistical Approach[G].LNCS 3431:Proc.of the 6th Int.Workshop on Passive and Active Network Measurement.Berlin:Springer,2005:321 -324.
  • 3Constantinou F,Mavrommatis P.Identifying Known and Unknown Peer-to-Peer Traffic[C].Proc.of the 5th IEEE Int.Syup.on Network Computing and Application.Piscataway,NJ:IEEE,2006:93-102.
  • 4Chen H,Hu Z,Ye Z,et al.Reserch of P2P Traffic Classification Based on BP Neural Network[C].Proc.of the 1st Int.Symp.on Computer Network and Multimedia Technology.Piscataway,NJ:IEEE,2009:579-582.
  • 5Yang A,Jiang S,Deng H.A P2P Network Traffic Classification Method Using SVM[C].Proc.of the 9th Int.Conf.on Young Computer Scientists.Piscataway,NJ:IEEE,2008:398-403.
  • 6Liu F,Li Z,Nie Q.A New Method of P2P Network Traffic Classification Based on Support Vector Machine at the Host Level[C].Proc.of the Int Conf on Information Technology and Computer Science.Piscataway,NJ:IEEE,2009:579-582.
  • 7李致远,王汝传.一种基于机器学习的P2P网络流量识别方法[J].计算机研究与发展,2011,48(12):2253-2260. 被引量:18
  • 8戴磊,王源,刘科科.一种主动学习式P2P流识别方法[J].计算机应用研究,2012,29(2):717-721. 被引量:3
  • 9Roy N,McCallum A.Toward Optimal Active Learning Through Sampling Estimation of Error Reduction[C].Proc.of the Conf.Mach.Learn (ICML),2001:441-448.
  • 10C Cortes,V Vapnik.Support Vector Networks[J].Machine Learning,1995,20 (3):273-297.

二级参考文献24

  • 1Sen S, Wang J. Analyzing peer to peer traffic across large networks [J]. IEEE Trans on Networking, 2004, 12(2): 137-150.
  • 2Sen S, Spatscheck O, Wang D. Accurate, scalable in- network identification of P2P traffic using application signatures [C] //Proc of the 13th Int Conf on World Wide Web. New York: ACM, 2004:512-521.
  • 3Wang R, Liu Y, Yang Y, et al. Solving the app-level classification problem of P2P traffic via optimized support vector machines [C] //Proc of the 6th Int Conf on Intelligent Systems Design and Applications. Piseataway, NJ: IEEE, 2006:534-539.
  • 4Karagiannis T, Broido A, Faloutsos M, et al. Transport layer identification of P2P traffic [C] //Proe of the 4th ACM SIGCOMM Conf on Internet Measurement. New York: ACM, 2004:121-134.
  • 5Auld T, Moore A W, Gull S F. Bayesian neural networks for lnternet traffic classification [J]. IEEE Trans on Neural Networks, 2007, 18(1): 223-239.
  • 6Zuev D, Moore A. Traffic classification using a statistical approach [G]//LNCS 3431 : Proc of the 6th Int Workshop on Passive and Active Network Measurement. Berlin: Springer,2005:321-324.
  • 7Constantinou F, Mavrommatis P. Identifying known and unknown peer-to-peer traffic [C] //Proc of the 5th IEEE Int Symp on Network Computing and Appli-cations. Piscataway, NJ: IEEE, 2006: 93-102.
  • 8Chen H, Hu Z, Ye Z, et al. Research of P2P traffic identification based on BP neural network [C]//Proc of the 1st Int Syrup on Computer Network and Multimedia Technology. Piscataway, NJ: IEEE, 2009:1-4.
  • 9Yang A, Jiang S, Deng H. A P2P network traffic classification method using SVM [C] //Proc of the 9th Int Conf on Young Computer Scientists. Piscataway, N J: IEEE, 2008:398-403.
  • 10Liu F, Li Z, Nie Q. A new method of P2P traffic identification based on support vector machine at the host level [C] //Proc of the ]nt Conf on Information Technology and Computer Science. Piscataway, NJ: IEEE, 2009: 579- 582.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部