摘要
工业部门能源效率的提高是整个长三角城市群能效提升的关键。文章采用随机前沿分析方法并基于超越对数生产函数,首次对2001-2009年长三角城市群14个代表性城市的工业全要素能源效率增长率进行了测算及分解,并进一步基于面板数据模型对工业全要素能源效率增长的影响因素进行了经验考察。研究结果表明:长三角城市群工业全要素能源效率一直呈现增长趋势,工业技术效率整体上呈现下降趋势,技术进步率则保持稳定增长,但大多数城市呈现出规模经济下降状态;企业规模、对外开放、政府干预、外商直接投资和煤炭消费比重对工业全要素能源效率增长表现出显著的抑制作用,而偏向于劳动密集型的要素投入结构则有利于工业全要素能源效率的提升。
The increase in energy efficiency of industrial sectors plays a key role in the rise in energy efficiency of urban agglomeration in the Yangtze River Delta. Based on stochastic frontier analysis and trans-log production function, this paper estimates and decomposes the growth rates of industrial total factor energy efficiency of fourteen representative cities in the urban agglomera- tion in the Yangtze River Delta from 2000 to 2009 for the first time. Furthermore, it empirically investigates the influencing factors of the growth of industrial total factor energy efficiency based on the panel data model. It comes to the following results: firstly, industrial total factor energy efficiency of urban agglomeration in the Yangtze River Delta shows a continuously growth trend, while industrial technology efficiency presents a downward trend on the whole, and industrial technology progress remains stable;a majority of cities are featured by a decline in economies of scale; secondly,enterprise scale, openness, government intervention, FDI, and the share of coal in the total energy consumption play the significantly inhibition role in the growth of industrial total factor energy efficiency, while labor-intensive-oriented factor input structure is beneficial to the increase in industrial total factor energy efficiency.
出处
《上海财经大学学报(哲学社会科学版)》
CSSCI
北大核心
2014年第3期95-102,共8页
Journal of Shanghai University of Finance and Economics
基金
国家社会科学基金重点项目(10AZD015)
国家自然科学基金项目(71003068
71373153)
教育部"新世纪优秀人才支持计划"(NCET-13-0890)
上海财经大学研究生科研创新基金(CXJJ-2011-302)
上海财经大学优秀博士学位论文培育基金(201202)
关键词
工业全要素能源效率
长三角城市群
随机前沿分析
影响因素
面板数据
industrial total factor energy efficiency
urban agglomeration in the Yangtze RiverDelta
stochastic frontier analysis
influencing factor
panel data