期刊文献+

Interannual variability of remotely sensed chlorophyll a during an autumn monsoon transitional period in the Taiwan Strait

Interannual variability of remotely sensed chlorophyll a during an autumn monsoon transitional period in the Taiwan Strait
下载PDF
导出
摘要 The time series of multiple sources of satellite data are used to examine the interannual variability of chlorophyll a concentration (Chl a) and its relation to the physical environment during the autumn monsoon transitional period in the Taiwan Strait (TWS). The satellite data included the Chl a concentration and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)/ Aqua as well as the multi-sensors merged wind products from 2002 to 2012. The results show that the average Chl a concentration of the whole TWS is mainly contributed by the northern TWS. The average Chl a in the northern TWS is 3.6 times that in the southern TWS. The maximum variability of Chl a is located in the frontal regions between the cold Zhe-Min Coastal Water and the strait warm water. The temporal change of Chl a concentration is different in the northern and southern TWS. The changes in the relative strength of the cold and warm water masses is suggested to be the dominant processes in controlling the phytoplankton growth in the northern TWS, while there is wind-induced mixing in the southern TWS. Additionally, La Nina events exhibited complex effects on the interannual variability of Chl a concentration in autumn. The longterm time series of physical and biological observations are especially needed to better understand how the TWS complex ecosystem responds to climate variations. The time series of multiple sources of satellite data are used to examine the interannual variability of chlorophyll a concentration (Chl a) and its relation to the physical environment during the autumn monsoon transitional period in the Taiwan Strait (TWS). The satellite data included the Chl a concentration and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)/ Aqua as well as the multi-sensors merged wind products from 2002 to 2012. The results show that the average Chl a concentration of the whole TWS is mainly contributed by the northern TWS. The average Chl a in the northern TWS is 3.6 times that in the southern TWS. The maximum variability of Chl a is located in the frontal regions between the cold Zhe-Min Coastal Water and the strait warm water. The temporal change of Chl a concentration is different in the northern and southern TWS. The changes in the relative strength of the cold and warm water masses is suggested to be the dominant processes in controlling the phytoplankton growth in the northern TWS, while there is wind-induced mixing in the southern TWS. Additionally, La Nina events exhibited complex effects on the interannual variability of Chl a concentration in autumn. The longterm time series of physical and biological observations are especially needed to better understand how the TWS complex ecosystem responds to climate variations.
出处 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第5期72-80,共9页 海洋学报(英文版)
基金 The 973 Program Grant of China under contract No.2009CB421201 the National Natural Science Foundation of China under contract Nos U1305231 and 40706041 the Natural Science Foundation of Fujian Province under contract No.2011J01278 the Foundation of Key Laboratory of Marine Integrated Monitoring and Applied Technologies for Harmful Algal Blooms,State Oceanic Administration,under contract No.MATHAB20100313
关键词 chlorophyll a FRONT wind-induced mixing AUTUMN interannual variability Taiwan Strait chlorophyll a, front, wind-induced mixing, autumn, interannual variability, Taiwan Strait
  • 相关文献

参考文献6

二级参考文献74

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部