期刊文献+

快速混合粒子群优化算法应用研究 被引量:3

Study on a fast hybrid particle swarm optimization algorithm
下载PDF
导出
摘要 文中针对把最小化总流动时间作为基准(Fm|fmls,Splk,prmu|∑Cj)的流水车间序列依赖组调度问题(FSDGS),研究了一种新的粒子群优化算法(PSO)。并基于排序值(Ranked Order Value,ROV)开发了一种编码方案,这种方案能将PSO算法中粒子的连续位置值转化成作业和组排列。文中用了一种称为个体增益(IE)的邻域矩阵搜索策略来保证提高搜索的质量并在深度和广度上做出平衡。新算法的性能被拿来与当前文献中提到的已知最好的元启发式算法即蚁群算法(ACO)进行对比,基于常用测试测试问题,结果显示新算法性能较诸ACO算法更加优越。 A Particle Swarm Optimization (PSO) algorithm for a Flow Shop Sequence Dependent Group Scheduling (FSDGS) problem,with minimization of total flow time as the criterion (Fm|fmls,Splk,prmu|∑Gj), is proposed in this research. An encoding scheme based on Ranked Order Value (ROV) is developed, which converts the continuous position value of particles in PSO to job and group permutations. A neighborhood search strategy, called Individual Enhancement (IE), is fused to enhance the search and to balance the exploration and exploitation. The performance of the algorithm is compared with the best available meta-heuristic algorithm in literature, i.e. the Ant Colony Optimization (ACO) algorithm, based on available test problems. The results show that the proposed algorithm has a superior performance to the ACO algorithm.
作者 康鲲鹏
出处 《电子设计工程》 2014年第10期10-13,共4页 Electronic Design Engineering
基金 河南省科技厅基础与前沿技术研究项目(142300410188)
关键词 成组调度 流水线调度 粒子群 序列依赖 group scheduling flow shop scheduling particle swarm sequence dependent
  • 相关文献

参考文献7

  • 1Kennedy J,Eberhart R. Particle swarm optimization [C]// Proceeding of IEEE International Conference on Neural Network, 4, Australia, 1995:1942-1948.
  • 2Sehaller G E, Gupta J N D,Vakharia A. Scheduling a flow line manufacturing cell with sequence dependent family setup time [J]. European Journal of Operational Research, 2000,125 (2) :324-329 .
  • 3Franca P M,Gupta J N D,Mendes P M ,et al. Evolutionary algorithms for scheduling a flow shop manufacturing cell with sequence dependent family setups [J]. Computers and Industrial Engineering, 2005,48 (3) : 491-506.
  • 4王江荣.基于粒子群优化算法的直线拟合及应用[J].工业仪表与自动化装置,2013(4):73-75. 被引量:5
  • 5杨柳春.基于粒子群优化算法的AR模型参数估计[J].工业仪表与自动化装置,2013(5):67-69. 被引量:1
  • 6Lin S W,Gupta J N D,Ying K C,et al. Using simulated annealing to schedule a fiowshop manufacturing cell with sequencedependent family setup times[J]. International Journal of Production Research, 2009,47 (12) : 3205 -3217.
  • 7齐学梅,罗永龙,赵诚.求解流水车间调度问题的混合粒子群算法[J].计算机工程与应用,2012,48(9):33-36. 被引量:9

二级参考文献30

  • 1陈国强,赵俊伟,黄俊杰,刘万里.基于Matlab的AR模型参数估计[J].工具技术,2005,39(4):39-40. 被引量:26
  • 2彭秀艳,赵希人,高奇峰.船舶姿态运动实时预报算法研究[J].系统仿真学报,2007,19(2):267-271. 被引量:45
  • 3Garey M R,Johnson D S,Sethi R.The complexity of flowshop and jobshop scheduling[J].Mathematics of Operations Research,1976,1(2):117-129.
  • 4Widmer M,Hertz A.A new heuristic method for the flow shop sequencing problem[J].European Journal of Operational Research,1989,41(2):186-193.
  • 5Pinedo M.Scheduling:theory,algorithm,and system[M].Englewood Cliffs,NJ:Prentice-Hall,1995.
  • 6Kalczynski P J,Kamburowski J.On the NEH heuristic for mini-mizing the makespan in permutation flow shops[J].Omega,2007,35(1):53-60.
  • 7Framinan J M,Leisten R,Rajendran C.Different initial sequences for the heuristic of Nawaz,Enscore and Ham to minimize makes-pan,idle time or flowtime in the static permutation flowshop se-quencing problem[J].International Journal of Production Research,2003,41(1):121-148.
  • 8Framinan J M,Leisten R.An efficient constructive heuristic for flowtime minimisation in permutation flow shops[J].Omega,2003,31(4):311-317.
  • 9Woo H S,Yim D S.A heuristic algorithm for mean flowtime ob-jective in flowshop scheduling[J].Computers&Operations Re-search,1998,25(3):175-182.
  • 10Rajendran C,Ziegler H.An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs[J].Europe-an Journal of Operational Research,1997,103(1):129-138.

共引文献12

同被引文献27

  • 1ZHAO Zi-xiang,ZHANG Guo-shan,BING Zhi-gang. Job- shopscheduling optimization design based on an improved GA[C]//2012 10th World Congress on Intelligent Control and Automation (WCICA). Beijing: IEEE,2012:654,659.
  • 2Eberhart R,Kennedy J. A new optimizer using particle swarm theory [C]//Proceeding of the Sixth International Symposium on Micro Machine andHuman Science. Nagoya: IEEE, 1995: 39-43.
  • 3Niu Q ,Jiao B ,Gu X S. Particle swarm optimization combined with genetic operators for job-shop scheduling problem with fuzzy processingtime[J]. Applied Mathematics and Computa- tion,2008,205 (1):148-158.
  • 4CHIANG Tsung-Che,FU Li-Chen. Muhiobjective Job Shop Scheduling using Genetic Algorithm with Cyclic Fitness As- signment [C]//IEEE Congress on Evolutionary Computation. Vancouver BC: IEEE,2006:326-3273.
  • 5SureshV,ChandhuriD. Dynamic Scheduling-A survey of research[J].Int Jof Prod Peon, 1993,32 ( 1 ) :53-63.
  • 6YAN Ping,JIAO Ming-hai. Animproved PSO search method for the job shop scheduling problem[C]//Control and Decision Conference. Mianyang: IEEE ,2011:23-25.
  • 7王艳,曾建潮.一种基于拟态物理学优化的多目标优化算法[J].控制与决策,2010,25(7):1040-1044. 被引量:25
  • 8戴晓红,吴征涛,刘沛立,李英彪.基于博弈论和灰色面积关联度的配电网运行安全性评价方法[J].陕西电力,2012,40(4):30-33. 被引量:6
  • 9汤涌,王英涛,田芳,徐得超,于之虹,张文朝,宋新立,郎燕生,付辉,裘微江.大电网安全分析、预警及控制系统的研发[J].电网技术,2012,36(7):1-11. 被引量:52
  • 10杨丽君,王硕,卢志刚.配电网智能化规划评价指标[J].电网技术,2012,36(12):83-87. 被引量:36

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部