期刊文献+

时分双工单源双宿两跳级联网络的容量研究

Capacity of time division duplex two-hop cascaded networks with one source and two sinks
下载PDF
导出
摘要 考虑由一个源节点、两个目标节点组成的单源双宿两跳级联网络模型:中间节点是目标节点,除了接收、处理、分离自己所需消息,同时又作为中继节点,采用解码转发方式将其他信息转发给下一个目标节点。网络采用时分双工模式进行传输,发送端和接收端使用的频率相同。利用割集理论寻找该网络的容量外界,确定两跳的最优时间分配系数,并证明其可实现性,最后进行分析验证。 A two-hop cascaded network with one source node and two sink nodes is considered in this paper. The middle node is not only the target to receive, process, and separate its own messages, but also as the relay node, transmit other messages to the next sink node by decode-and-forward relay strategy. The network operates in TDD mode where transmit and receive fre- quencies are the same. We derive the cut-bound of the network to find the optimal time distribution coefficient, and its achievablity is proved. Finally the results are analyzed and verified.
机构地区 上海海事大学
出处 《电子技术应用》 北大核心 2014年第6期109-111,114,共4页 Application of Electronic Technique
基金 国家自然科学基金项目(61271283) 上海海事大学科研基金项目(20120107) 上海教委科研创新项目(14YZ113)资助
关键词 单源双宿 级联 时分 容量边界 one source and two sinks cascaded time-division capacity bound
  • 相关文献

参考文献7

  • 1SHANNON C E. Two-way communication channels[J]. In: Proc. 4th Berkeley Svm Math. Statist. and Prob. 1961,1(VD):611-644.
  • 2AHLSWEDE R. Multi-way communication channels[C], in Proc. 2nd Int. Symp.Information Theory.Tsahkadsor,Armen- ian S.S.R., 1971:23-52.
  • 3COVER T M. Broadcast channels[J]. IEEE Trans. Inform. Theory, 1972, IT-18, Jan: 2-14.
  • 4COVER T M, THOMAS J A. Elements of information the- ory[J]. Wiley Series in Telecommunications, 1991.
  • 5SENDONARIS A, ERKIP E, AAZHANG B. User coopera- tion diversity. Part I system description[J]. IEEE Trans. Commun, 2003,51 ( 11 ): 1927-1938.
  • 6KHOJASTEPOUR M A, SABHARWAL A, AAZHANG B. Bounds on achievable rates for general multi-terminal net- works with practical constraints[C]. Information Processing in Sensor Networks (Lecture Notes in Computer Science). Berlin: Springer, 2003.
  • 7SATO H. An outer bound to the capacity region of broad- cast channels[J].IEEE Trans. Inform. Theory, 1978,24(3): 374-377.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部