期刊文献+

基于ISL0算法的码间干扰稀疏多径信道估计 被引量:2

ISI sparse channel estimation based on ISL0 algorithm
下载PDF
导出
摘要 针对存在码间干扰ISI的稀疏多径信道,已提出基于压缩感知理论的平滑SL0算法来研究其稀疏特性,然而SL0算法的迭代方向为负梯度方向,存在"锯齿效应",且其代价函数"陡峭性"性能欠佳,使得信道估计和收敛效果均未达到最优。因此提出利用拉格朗日算子,结合牛顿法来改进和优化SL0算法,获得了快速和高效的信号重构ISL0算法,对稀疏多径信道状态信息进行了相关估计,分析了信噪比SNR和迭代次数等参数对重构信号均方误差MSE的影响。比较了ISL0算法与其他相关算法的迭代时间以及对稀疏信道中ISI均衡效果的差异。算法的优越性通过仿真得到验证,实时仿真结果显示ISL0算法能很好地对稀疏信道进行估计。在同样信道环境条件下,相比CoSaMP、SL0及其他算法,ISL0算法的性能有了较大提高。 A smoothed L0 (SL0) algorithm based on compressed sensing proposed in previous works for inter symbol interference (ISI) sparse channel estimation. But this method has "notched effect" due to the negative iterative gradient direction. Moreover, the "steep nature" of cost function in SL0 is not steep enough, leading to channel estimation errors and make convergence results not the most optimal. The lagrange multipliers and newton method were combined to optimize SL0 algorithm in order to obtain a more rapid and efficient signal reconstruction algorithm termed as an improved smoothed L0 (ISL0). The channel state information (CSI) of the sparse multi-path channel was obtained and analysis of reconstructed signal deviation, mean squared error (MSE) in the perspective of iterations and signal-to-noise ratio (SNR) as well as the iteration time and ISI equalization performance were also done. Furthermore, the superiority of ISL0 has been verified by computer simulation. Real-time simulation results clearly show that the ISL0 algorithm can estimate the ISI sparse channel much better. Compared with CoSaMP, SL0 and some other algorithms, the ISL0 algorithm can greatly improve the performance of system in the same channel environments.
出处 《通信学报》 EI CSCD 北大核心 2014年第5期124-133,共10页 Journal on Communications
基金 国家自然科学基金资助项目(61372128) 科技部公益性行业专项基金资助项目(GYHY200906053) 江苏省科技支撑计划(工业)基金资助项目(BE2011195)~~
关键词 压缩采样 线性规划 非凸优化 ISL0算法 稀疏恢复 compressed-sensing linear program non-convex optimization ISL0 algorithm sparse restoration
  • 相关文献

参考文献21

  • 1BERGER C R, WANG Z H, HUANG J Z, et al. Application of com- pressive sensing to sparse channel estimation[J]. IEEE Communica- tion Magazine, 2010, 48(11): 164-174.
  • 2CARBONELLI S V C, MITRA U. Sparse channel estimation with zero tap detection[J]. IEEE Trans Communication, 2007, 6(5): 1743-1754.
  • 3PROAKIS J. Digital Communication, 4th Edition[M]. New York: Mc- Graw Hill, 2001.
  • 4LANG T, SADLER B M, MIND. Pilot-assisted wireless transmis- Sions'[J]. IEEE Signal Process, Mag, 2004, 21(6):12-25.
  • 5CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency infor- mation[J]. IEEE Trans on Information Theory, 2006, 52(2): 489-509.
  • 6DONOHO D L. Compressed sensing[J]. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306.
  • 7COTTER S F, RAO B D. Sparse channel estimation via matching pursuit with application to equalization[J]. IEEE Transaction on Communications, 2002, 50(3): 374-377.
  • 8TROPP J, GILBERT A. Signal recovery from random measurements via orthognnal matching pursuit[J]. Trans on Information Theory, 2007 53(12): 4655-4666.
  • 9WRIGHT J, GANESH A, YANG A, et al. Robust face recognition via sparse representation[J]. IEEE Transaction PAMI, 2008, 31(2):210- 217.
  • 10MOHIMANI H, BABAIE-ZADEH M, JUTTEN C. Complex valued sparse representation based on smooth L0 norm[A]. Proceedings of ICASSP 2008 Las Vegas: Conferenee~Publications[C]. 2008.3881- 3884.

二级参考文献27

  • 1黄震亚,管云峰,孙军.无线信道中的单载波频域均衡技术研究[J].通信技术,2007,40(4):1-3. 被引量:3
  • 2F Riera-palou, J M Noras. Linear Equalizers with Dynamic and Automatic Length selection [J]. Electronic Letters (S0013-5194), 2001, 37(25): 1553-1554.
  • 3Xusheng Wei, Cruickshank. Performance of Equalizers with Dynamic Length [C]// Vehicular Technology Conference, Italy. USA: IEEE, 2004: 545-549.
  • 4Tennant M P, Erdogan A T. A Novel Equalizer Architecture with Dynaamic Length Optimization [C]//IEEE International Symposium on Circuits and Systems, Greece, 2006, 4. USA: IEEE, 2006.
  • 5Cruickshank DG, M Mulgrew. A Unified Aproch to Dynamic Length Algorithms for Adaptive Linear Equalizers [J]. IEEE Trans. Signal Processing (S1053-587X), 2007, 55(3): 908-920.
  • 6Y K Won, R H Park. Variable LMS Algorithms using the time constant concept [J]. IEEE Trans. Consumer Electron (S0098-3"063), 1994, 40(3): 655-661.
  • 7F Riera-palou, J M Noras. Variable Length Equalizers for Broadband Mobile System [C]//IEEE 52th Vehicular Technology Conference. Boston(USA) 2000. USA: IEEE, 2000, 5: 2478-2485.
  • 8Z Pritzker, A Feuer. Variable length stochastic gradient algorithm [J]. IEEE Trans. Signal Processing (S1053-587X), 1991, 39(4): 997-1001.
  • 9Alexander M Peter Kabal. Variable-Length Subearrier Equalizers for Multicarrier Systems [C]// IEEE 60th Vehicular Technology Conference, Los Angeles, USA, 2004. USA: IEEE, 2004: 394-398.
  • 10ETS 300 744 V1.5.1 ETSI. Digital broadcasting systems for television, sound and data services; Framing structure, channel coding and modulation for digital terrestrial television [S]. 2004.

共引文献8

同被引文献21

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部