期刊文献+

水基纳米流体的凝固行为 被引量:10

Solidification behaviors of water-based nanofluids
下载PDF
导出
摘要 选用二氧化钛(TiO2)纳米颗粒、碳纳米管(CNT)和石墨烯(graphene)纳米片制备水基纳米流体。采用步冷曲线法测量纳米流体的凝固温度和时间。研究纳米材料形状、尺寸、接触角和比表面积对纳米流体凝固行为的影响。实验发现,TiO2纳米颗粒、CNT纳米管和石墨烯纳米片对纳米流体过冷度和凝固时间的减小作用依次增强。0.034%(质量分数)浓度的石墨烯纳米片可完全消除水的过冷现象,使其凝固起始时间和总时间分别缩短61.22%和30.53%。成核理论分析表明,纳米流体的凝固过冷度主要取决于单位体积纳米流体的成核面积。与接触角、形状和尺寸相比,纳米材料的比表面积对纳米流体过冷度的影响更大。 Titanium dioxide (TiO2 )nanoparticles,carbon nanotubes (CNT)and graphene nanoplates were chosen to prepare water-based nanofluids.The solidification processes of graphene/water,CNT/water and TiO2/water nanofluids were measured by the cooling curve method.Effects of nanomaterial shape,size,contact angle and specific surface area on the supercooling degree,starting time and total time of solidification of water were investigated.It was found that graphene nanoplates and TiO2 nanoparticles had the strongest and weakest effects on decreasing the supercooling degree and solidification times of water,respectively.Graphene nanoplates of 0.034wt% eliminated the supercooling phenomenon of water completely,and reduced the starting time and total time by 61.22% and 30.53%,respectively.Analysis of nucleation revealed that the supercooling degree of nanofluid was mainly dependent on the total surface area of nanomaterials exposed to water.Compared to the contact angle,shape and size of nanomaterials,the specific area of nanomaterials was more important to the supercooling degree of nanofluid.
出处 《功能材料》 EI CAS CSCD 北大核心 2014年第9期92-95,100,共5页 Journal of Functional Materials
基金 国家自然科学基金资助项目(51376050 51106031) 广东省自然科学基金重点资助项目(S2013020012817)
关键词 纳米流体 石墨烯 凝固 过冷度 nanofluid graphene solidification supercooling
  • 相关文献

参考文献4

二级参考文献30

  • 1李新芳,朱冬生.纳米流体传热性能研究进展与存在问题[J].化工进展,2006,25(8):875-879. 被引量:22
  • 2Das S K, Choi S U S, Patel H E. Heat transfer in nanofluids - a review[J]. Heat Transfer Engineering, 2006, 27 (10) : 3-19.
  • 3Chein R, Chuang J. Experimental microchannel heat sink performance studies using nanofluids[J]. International Journal of Thermal Sciences, 2007, 46: 57-66.
  • 4Tzeng S C, Lin C W, Huang K D, et al. Heat transfer enhancement of nanofluids in rotary blade coupling of four-wheel-drive vehicles[J]. Acta Mechanica, 2005, 179:11-23.
  • 5Wang X Q, Mujumdar A S. Heat transfer characteristics of nanofluids: a review[J]. International Journal of Thermal Sciences, 2007, 46: 1-19.
  • 6Choi S U S. Enhancement thermal conductivity of fluids with nanoparticles[J]. ASME Publications, 1995 (66/231):99-105.
  • 7Khodadadi.J.M,Hosseinizadeh.S.F.Nanoparticle enhanced phase change materials (NEPCM)with great potential for improved thermal energy storage[J]. International Communications in Heat and Mass Transfer, 2007, 34: 534-543.
  • 8Khanafer K, Vafai K,Lightstone M.Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids[J]. International Journal of Heat and Mass Transfer ,2003,46 (19):3639-3653.
  • 9Scok P J, S U S Choi. Role of Brownian notion in the enhanced thermal conductivity of nanofluids[J]. Applied Physics Letters, 2004, 84 (21) : 4316-4318.
  • 10何钦波,童明伟,刘玉东.低温相变蓄冷纳米流体成核过冷度的实验研究[J].制冷学报,2007,28(4):33-36. 被引量:47

共引文献134

同被引文献98

引证文献10

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部