期刊文献+

SINS/DGPS矢量重力测量系统滤波技术研究 被引量:1

Research on Filtering Technique for Vector Gravimetry System Using SINS / DGPS
下载PDF
导出
摘要 以单通道捷联惯性导航系统的速度误差和姿态误差方程为状态方程,以陀螺仪误差和垂线偏差为过程噪声,以DGPS的速度与捷联惯导的速度之差为观测量,建立Kalman滤波模型,经滤波得到高精度实时导航信息。从导航信息中提取水平重力信息,进而得到垂线偏差。对高精度惯性元件构建的惯导系统进行数值仿真,仿真结果表明,组合系统可以有效提高实时导航和姿态精度,经50s平均后,可以得到精度为2″的垂线偏差。 The Kalman filtering model is constructed in which single-channel velocity and attitude error equations of the strapdown inertial navigation system(SINS) are treated as the state equation, gyro error and deflection of vector are treated as process noise, and the velocity difference between DGPS and SINS is introduced as observed quantity. High precision information of navigation is obtained through Kalman filtering, from which the deflection of vector is derived. The SINS/DGPS integrated system with military grade inertial sensors is simulated, and it is concluded through simulation that the precision of the navigation and attitude parameters is effectively improved and the deflection of vector with the precision of 2" is obtained through 50 seconds adjustment.
出处 《海洋测绘》 2014年第3期37-39,43,共4页 Hydrographic Surveying and Charting
基金 国家自然科学基金(41374018)
关键词 捷联惯性导航系统 DGPS 矢量重力测量 KALMAN滤波 仿真 strapdown inertial navigation system differential global positioning system vector gravimetry Kalman filter simulation
  • 相关文献

参考文献14

  • 1Hofmann-Wellenhof B,Moritz H. Physical geodesy[M].New York:Springer,2006.
  • 2Chatfield AB. Fundamentals of high accuracy inertial navigation[M].AIAA (American Institute of Aeronautics & Astronautics),1997.
  • 3Glennie C,Schwarz K. A comparison and analysis of airborne gravimetry results from two strapdown inertial/ DGPS systems[J].Journal of Geodesy,1999,(06):311-321.
  • 4Li X. Strapdown INS/DGPS airborne gravimetry tests in the Gulf of Mexico[J].Journal of Geodesy,2011,(09):597-605.
  • 5Cai S,Zhang K,Wu M. Improving airborne strapdown vector gravimetry using stabilized horizontal components[J].Journal of Applied Geophysics,2013.79-89.
  • 6欧阳永忠,邓凯亮,陆秀平,吴太旗,晏新村,常国斌.多型航空重力仪同机测试及其数据分析[J].海洋测绘,2013,33(4):6-11. 被引量:27
  • 7Chang G. Robust Kalman filtering based on Mahalanobis distance as outlier judging criterion[J].Journal of Geodesy,2014,(04):391-401.
  • 8Chang G. Kalman filter with both adaptivity and robustness[J].Journal of Process Control,2014.81-87.
  • 9Bekir E. Introduction to modern navigation systems[M].Beijing:World Scientific,2007.
  • 10Kwon JH,Jekeli C. Gravity requirements for compensation of ultra-precise inertial navigation[J].Journal of Navigation,2005,(03):479-492.

二级参考文献38

共引文献52

同被引文献14

  • 1Chang G.Loosely Coupled INS/GPS Integration with Constant Lever Arm using M arginal Unscented Kalman Filter[J].The Journal of Navigation,2014,67(3):419-436.
  • 2Simon D.Optimal state estimation:Kalman,H∞,and nonlinear approaches[M].New Jersey:WileyInterscience,2006.
  • 3Yang L,Wang J,Knight NL,et al.Outlier separability analysis w ith a multiple alternative hypotheses test[J].Journal of Geodesy,2013,87(6):591-604.
  • 4Huber PJ,Ronchetti EM.Robust Statistics[M].2nd ed.New Jersey:John Wiley&Sons,2009.
  • 5Koch K-R.Robust estimations for the nonlinear Gauss Helmert model by the expectation maximization algorithm[J].Journal of Geodesy,2014,88(3):263-271.
  • 6Yang Y,He H,Xu G.Adaptively robust filtering for kinematic geodetic positioning[J].Journal of Geodesy,2001,75(2):109-116.
  • 7Chang G.Robust Kalman filtering based on Mahalanobis distance as outlier judging criterion[J].Journal of Geodesy,2014,88(4):391-401.
  • 8Bekir E.Introduction to modern navigation systems[M].Beijing:World Scientific,2007.
  • 9Tang Y,Wu Y,Wu M,et al.INS/GPS integration:Global observability analysis[J].IEEE Transactions on Vehicular Technology,2009,58(3):1129-1142.
  • 10Kailath T,Sayed AH,Hassibi B.Linear estimation[M].New Jersey:Prentice Hall,2000.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部