期刊文献+

基于改进非局部先验的Bayesian低剂量CT投影平滑算法 被引量:3

Improved nonlocal prior-based Bayesian sinogram smoothing algorithm for low-dose CT
下载PDF
导出
摘要 针对低剂量CT(LDCT)图像质量退化的问题,提出了一种改进的非局部先验模型,并将基于该模型的Bayesian统计算法应用于LDCT投影降噪中.首先将方向性测度引入到传统的非局部先验模型中,构建一种改进的先验模型;同时结合基于加权欧氏距离的距离测度,提高权重系数计算的准确性;然后运用基于该先验模型的Bayesian统计算法对LDCT投影进行平滑降噪;最后依据降噪后投影,利用滤波反投影(FBP)方法进行重建,得到改善的LDCT图像.实验结果表明,与典型的传统LDCT重建算法相比,该算法在抑制噪声、去除伪影的同时,较好地保留了重建图像细节信息. Aiming at the problem that low-dose computed tomography (LDCT)image quality is de-graded,an improved nonlocal prior model is proposed and the prior-based Bayesian statistical algo-rithm is also applied to sinogram denoising for LDCT.First,the orientation measure is introduced into the traditional nonlocal prior model to construct a novel prior model.The accuracy of calculating the weight parameters is increased by incorporating the distance measure based on the weighed Eu-clidean distance into the improved prior model.Then,the Bayesian statistical algorithm is used in si-nogram smoothing for LDCT.Finally,the improved reconstructed image for LDCT is obtained by the filtered back-projection (FBP)from the smoothed projection data.Experimental results show that compared with traditional reconstruction algorithms for LDCT,the proposed algorithm is more effective in suppressing noise and eliminating streak artifacts while maintaining more reconstruction image details.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期499-503,共5页 Journal of Southeast University:Natural Science Edition
基金 国家重点基础研究发展计划(973计划)资助项目(2010CB732503) 国家自然科学基金资助项目(61071192 61271357)
关键词 低剂量CT 非局部先验模型 方向性测度 Bayesian统计降噪算法 low-dose computed tomography (CT) nonlocal prior model orientation measure Bayesian statistical denoising algorithm
  • 相关文献

参考文献2

二级参考文献28

  • 1Li T,Li X,Wang J,et al.Nonlinear sinogram smoothing for low- dose X-ray CT[J].IEEE Transactions on Nuclear Science,2004,51 (5) : 2505-2513.
  • 2La Riviere P J,Billmire D M.Reduction of noise-induced streak artifacts in X-ray computed tomography through Spline-based penalized-likelihood sinogram smoothing[J].IEEE Transactions on Medical Imaging, 2005,24( 1 ) : 105-111.
  • 3La Riviere P J.Penalized-likelihood sinogram smoothing for low dose CT[J].Medical Physics, 2005,32:1676-1683.
  • 4Wang J,Li T,Lu H,et al.Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography[J].IEEE Transactions on Medical Imaging, 2006,25 ( 10 ) : 1272-1283.
  • 5Wang J,Li T,Lu H,et al.Noise reduction for low-dose single-slice helical CT sinograms[J].IEEE Transactions on Nuclear Science, 20()6, 53(3 ): 1230-1237.
  • 6Hsieh J.Adaptive streak artifact reduction in computed tomography resulting from excessive X-ray photon noise[J].Medical Physics, 1998,25:2139-2147.
  • 7KachelrieB M,Watzke O,Kalender W A.Generalized multi--dimensional adaptive filtering for conventional and spiral single-slice,multislice, and cone-beam CT[J].Medical Physics, 2001,28: 475-490.
  • 8Demirkaya K.Reduction of noise and image artifacts in computed tomography by nonlinear filtration of the projection images[C]//Proc SPIE Medical Imaging,2001,4322:917-923.
  • 9Bowsher J E,Johnson V E,Turkington T G,et al.Bayesian reconstruction and use of anatomical a priori information for emission tomography[J].IEEE Transactions on Medical Imaging, 1996,15(5). 673-686.
  • 10Daniel F Yu,Fessler A.Edge-preserving tomographic reconstruction with nonlocal regularization[J].IEEE Transactions on Medical Imaging, 2002,21 (2) : 159-173.

共引文献18

同被引文献29

  • 1Kachelriess M, Watzke O, Kalender W A. Generalized multi-dimen- sional adaptive filtering for conventional and spiral single-slice, mu|ti- slice, and cone-beam CT [ J ]. Medical Physics 2001 , 28 (4) : 475 - 490.
  • 2Gui Z G, Liu Y. Noise reduction for Low-dose X-ray computed tomo- graphy with fuzzy filter [ J ]. Optik-Intemational Journal for Light and Electron Optics, 2012,123 ( 13 ) : 1207 - 1211.
  • 3Chen Y, Gao D Z, Nie C, et al. Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting local nonprior[ J]. Computerized Medical Imaging and Graphics, 2009,33 (7) :495 -500.
  • 4Rust G F, Aurich V, Reiser M. Noise dose reduction and image im- provements in screening virtual colonoscopy with tube currents of 20 mAs with nonlinear Gaassian filter chains[ C]//Medical Imaging 2002 Conference, New York : IEEE,2002 : 186 - 197.
  • 5Lui D, Cameron A, Modhafar A, et al. Low-dose computed tomo- graphy via spatially adaptive Monte-Carlo reconstruction [ J ]. Comput- erized Medical Imaging and Graphics, 2013,37(7 -8 ) :438 -449.
  • 6Zhong J, Sun H. Wavelet-based multiscale anisotropic diffusion with a- daptive statistical analysis for image restoration[ J]. IEEE Transactions on Circuits and Systems ,2008,55 (9) :2716-2725.
  • 7Perona P, Malik J. Scale space and edge detection using anisotrepic diffusion[ J]. IEEE Transactions on Pattern AnMysis and Machine In- telligence, 1990,12 (7) :629 - 639.
  • 8Chao S M, Tsai D M. An improved anisotropic diffusion model for de- tail and edge preserving smoothing [ J ]. Pattern Recognition Letters, 2010,31 (13) :2012 -2023.
  • 9Elbakri I A, Fessler J A. Statistical image reconstruction for polyener- getic X-ray computed tomography [ J] . IEEE Transactions on Medical Imaging,2002,21 (2) :89 -99.
  • 10Lu Hongbing, Li Xiang, Li Lihong, et al. Adaptive noise reduction to- ward low-dose computed tomography [ C ]. SPIE Proceedings Medical Imaging, 2003 : Physics of Medical Imaging,2003,5030:759 - 766.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部