期刊文献+

基于局部紧耦合结构的模块性优化社区检测方法 被引量:4

Modularity optimization method for community detection based on local close-knit structures
下载PDF
导出
摘要 利用局部紧耦合结构提升社区检测的模块性优化质量.首先,定义了4类边缘紧耦合结构,并提出了一种具有线性复杂度的边缘紧耦合结构挖掘算法.其次,分别选择k-clique,k-clan,k-plex结构作为核心紧耦合结构,并以长结构优先和短结构优先2种策略将边缘与核心紧耦合结构合并.然后,将合并后的局部紧耦合结构融入模块性优化过程,提出了一种NFN算法.该算法将每个局部紧耦合结构初始化为独立社区,不断凝聚模块性增量最大的2个社区,直至找到预定义数量的社区.6个真实数据集上针对外部指标和内部指标的实验结果均表明,相比于传统的FN算法,NFN算法能发现更高质量的社区.在参数设置方面,长结构优先策略优于短结构优先策略,且采用k-clique结构作为核心紧耦合结构优于采用其他结构.因此,长结构优先策略结合k-clique成为NFN算法的最佳参数组合. Local close-knit structures are used to improve the quality of modularity optimization in community detection.First,four kinds of periphery close-knit structures are defined,and an algorithm for mining periphery close-knit structures with linear complexity is presented.By selecting k-clique,k-clan,and k-plex as core close-knit structures,two strategies including long-structure-first and short-structure-first are employed for merging periphery with core structures.Thus,a novel algorithm named new Fast Newman (NFN)is proposed by incorporating merged local structures into the modularity op-timization process.In particular,each local close-knit structure is initialized as an isolated community, and then two communities are merged to maximize the increase of modularity.This process is repeated until the pre-defined number of communities is discovered.The experimental results in terms of both internal and external validities on six real-world social networks demonstrate that compared with the traditional Fast Newman(FN)algorithm,the NFN algorithm can find communities in better quality. Moreover,the long-structure-first strategy outperforms the short-structure-first strategy,and employing k-clique as core close-knit structures is better than other structures.Therefore,the long-structure-first strategy with k-clique is the best parameter setting for the NFN algorithm.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期504-509,共6页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60973140 61103229 71372188) 国家级电子商务信息处理国际联合研究中心资助项目(2013B01035) 国家科技支撑计划资助项目(2013BAH16F03)
关键词 社区检测 模块性 FN算法 社会网络 紧耦合结构 community detection modularity Fast Newman (FN) algorithm social network close-knit structure
  • 相关文献

参考文献4

二级参考文献79

  • 1Watts D J, Strogatz SH. Collective dynamics of Small-World networks. Nature, 1998,393(6638):440-442.
  • 2Barabasi AL, Albert R. Emergence of scaling in random networks. Science, 1999,286(5439):509-512.
  • 3Barabasi AL, Albert R, Jeong H, Bianconi G. Power-Law distribution of the World Wide Web. Science, 2000,287(5461):2115a.
  • 4Albert R, Barabasi AL, Jeong H. The Internet's Achilles heel: Error and attack tolerance of complex networks. Nature, 2000, 406(2115):378-382.
  • 5Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. of the National Academy of Science, 2002,9(12):7821-7826.
  • 6Guimera R, Amaral LAN. Functional cartography of complex metabolic networks. Nature, 2005,433(7028):895-900.
  • 7Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structures of complex networks in nature and society. Nature, 2005,435(7043):814-818.
  • 8Wilkinson DM, Huberman BA. A method for finding communities of related genes. Proc. of the National Academy of Science, 2004,101(Suppl.1):5241-5248.
  • 9Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proc. of the National Academy of Science, 2004,101 (9):2658-2663.
  • 10Palla G, Barabasi AL, Vicsek T. Quantifying social group evolution. Nature, 2007,446(7136):664-667.

共引文献219

同被引文献51

  • 1Newman M E. Modularity and community structure in networks[J]. Proceedings of the National Academy of Sciences, 2006, 103(23) : 8577 8582.
  • 2Girvan M, Newman M E J. Community structure in social and bio logical networks F J:. Proceedings of the National Academy of Sciences of the United States of ATnerica, 2002, 99(12) : 7821 - 7826.
  • 3Kernighan B W, Lin S. An efficient heuristic procedure for par- titioning graphs [J]. Bell System Technical Journal, 1970, 49 (2) : 291 - 307.
  • 4Fortunato S. Community detection in graphs[J]. Physics Re- ports, 2010, 486(3): 75-174.
  • 5Newman M E. Fast algorithm for detecting community structure in networks[J]. Physical Review E,2004,69(6) :279 - 307.
  • 6Clauset A, Newman M E J, Moore C. Finding community structure in very large networks [J]. Physical Review E, 2004, 70(6):264-277.
  • 7Michelle G, Newman M E J. Community structure in social and biological networks. :-J:. Proceedings of the National Acade- my of Sciences of the United States of America, 2002, 99 (12) :7821 - 7826.
  • 8Newman M E, Girvan M. Finding and evaluating community structure in networks:JJ. Physical Review E, 2003, 69(2):292 - 313.
  • 9Guimera R, Sales Pardo M, Amaral L A. Modularity from fluctuations in random graphs and complex networks E J ]. PhysicalReview E, 2004, 70(2) : 188 - 206.
  • 10Duch A. Community detection in complex networks using ex- tremaloptimization. I-J:. Physical Review E, 2005, 72(2): 986 - 1023.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部