期刊文献+

HDMR在电网潮流概率评估与调控中的应用 被引量:4

Application of High Dimensional Model Representation in Probability Assessment and Regulation of Power Flow
下载PDF
导出
摘要 高维模型表达(high dimensional model representation,HDMR)在描述系统输出量关于多输入量之间关系方面具有独特的性能,而电网潮流状态量与网络多个节点源流注入量间正好符合HDMR的相关属性。基于此,将HDMR应用于电网潮流概率评估与调控问题:通过典型代表性的样本构建关键支路上传输的功率与电源和负荷间的HDMR关系,并替换传统潮流计算方式承担潮流概率评估过程中大规模的潮流计算任务,以极大地提高关键支路潮流累积概率分布生成及其相关特征求取的效率;对关键支路潮流阻塞问题,设计了一种利用HDMR提供的全局灵敏度信息并兼顾节能减排性能指标的概率调控策略。算例表明,HDMR的应用可显著提高电网潮流概率评估的计算效率和关键支路潮流阻塞概率调控的性能。 High dimensional model representation (HDMR) possesses unique performance in describing the relationship between the output and the multiple inputs of a nonlinear system,and the relation between power state variables and multiple bus inputs of the power system just accords with the related property of HDMR.Based on this,HDMR is applied in probabilistic assessment and regulation of power flow,that is,the HDMR relation among the power transmitted in the key branch and power sources and loads is constructed by typical representative samples to replace large-scale power flow computation carried out by traditional power flow calculation modes undertaking the task of power flow probabilistic assessment,thus the generation of cumulative probability distribution of power flow in key branch and the efficiency to obtain its related property can be greatly improved.To solve the congestion of power flow in key branch,a probabilistic regulation strategy,which utilizes the global sensitivity information provided by HDMR and takes performance indices of energy conservation and emission reduction into account,is designed.Simulation results of IEEE New England 10-machine 39-bus system show that applying HDMR can evidently speed up the calculation of probabilistic assessment of power flow power system and enhance the regulation performance of power flow congestion.
出处 《电网技术》 EI CSCD 北大核心 2014年第6期1585-1592,共8页 Power System Technology
基金 国家高技术研究发展计划(863计划)重大项目(2011AA05A105) 国家自然科学基金项目(51377035) 国家电网公司科技创新重大专项(SGCC-MPLG-023-2012)~~
关键词 电力网络 概率潮流 高维模型表达 评估 调控 阻塞 节能减排 灵敏度 MONTE Carlo抽样 power network probabilistic load flow high dimensional model representation (HDMR) assessment regulation congestion energy conservation and emission reduction sensitivity Monte Carlo sampling
  • 相关文献

参考文献33

二级参考文献260

共引文献836

同被引文献53

  • 1李玉,朱继忠,秦翼鸿,徐国禹.N及N-1静态安全域研究[J].中国电机工程学报,1993,13(2):49-54. 被引量:6
  • 2罗春雷,徐国禹,孙洪波.电力系统有功静态安全域的优化方法[J].电力系统及其自动化学报,1994,6(2):39-46. 被引量:7
  • 3HNYILICZA E, LEE S T Y, SCHWEPPE F C. Steady-state security regions: set-theoretic approach[C]//Proceedings of the IEEE PICA Conference, June 2 4, 1975, New Orleans, USA: 347-355.
  • 4WU F F, KUMAGAI S. Steady-state security regions of power systems[J]. IEEE Trans on Circuits and Systems, 1982, 29(11) ; 703-711.
  • 5LIU C C. A new method for the construction of maximal steady state security regions of power systems [J]. IEEE Trans on Power Systems, 1986, 1(4): 19-26.
  • 6ZHU Jizhong, FAN Rongquan, XU Guoyu, et al. Construction of maximal steady-state security regions of power systems using optimization method[J]. Electric Power Systems Research, 1998, 44(2): 101-105.
  • 7ZHU J Z. Optimal power system steady-state security regions with fuzzy constraints[C]// 2002 IEEE Power Engineering Society Winter Meeting, January 27-31, 2002, New York, USA: 1095-1099.
  • 8RABITZ H, ALI C S O, MER F. General foundations of high- dimensional model representations[J]. Journal of Mathematical Chemistry, 1999, 25(2/3): 197-233.
  • 9SRIDHARAN J, CHEN T. Modeling multiple input switching of CMOS gates in DSM technology using HDMR [-C]// Proceedings of the Design Automation &Test in Europe Conference, March 6-10, 2006, Munich, Germany: 626-631.
  • 10MILLER M, FENG Xiaojiang, LI Genyuan, et al. Nonlinear bionetwork structure inference using the random sampling-high dimensional model representation (RS-HDMR) algorithm [C]// 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, September 2-6, 2009, Minneapolis, USA: 6412-6415.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部