期刊文献+

求解流水车间调度问题改进的蚁群算法研究 被引量:1

Study on the improved ant colony algorithm for flow shop scheduling
下载PDF
导出
摘要 蚁群算法求解流水车间调度问题(FSP)容易陷入局部最优,为避免误差较大,提出一种改进的蚁群算法(IAACA).该算法融合最大最小蚂蚁系统的思想,改进了蚂蚁信息素挥发方式,在搜索初期,信息素挥发系数从较大的值呈线性递减趋势,利于算法跳出局部最优,在迭代后期,信息素挥发系数减小为较小的值,有利于精细寻优.对基准算例的仿真结果表明改进的蚁群算法的有效性. An improved adaptive ant colony algorithm (IAACA) model,which aim at solving slow convergence speed and local optimal of flow shop scheduling problem (FSP),is proposed to improve the efficiency of flow shop scheduling.The new adaptive ant colony algorithm,which introduces a new adaptive system to search quickly at the early iteration stage and to search accurately at the late stage,finds the solution to the problems of slow constringency,and the problems of searching speed and accuracy in the traditional ant colony algorithm.The simulation based on standard benchmark FSP examples indicates that the new adaptive ant colony algorithm with fast constringency and high precision and good scheduling efficiency can find out the optimal solutions or satisfactory solutions.The new algorithm is proved to be robust and effective.
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2014年第3期330-334,共5页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金项目(61262027) 广西高等学校科研项目(201203YB161)
关键词 流水车间调度 蚁群算法 最大最小蚂蚁系统 收敛速度 优化解 最优相对误差 flow shop scheduling problem ant colony algorithm max min ant system rate of convergence the optimal solution the best relative error
  • 相关文献

参考文献12

  • 1王凌.车间调度及其遗传算法[M]北京:清华大学出版社,2003.
  • 2Wang L,Zheng D Z. An effective hybrid optimization strategy for job-shop scheduling problems[J].Computers & Operations Research,2001.585-596.
  • 3Goncalves J F,Mendes J J M,Resende M G C. A hybrid genetie algorithm for the job scheduling problem[J].European Journal of Operational Research,2005.77-95.
  • 4Liu H B,Abraham A,Choi O. Variable neighborhood particle swarm optimization for multi-objective flexible jobshop scheduling problems[J].LNCS,2006.197-204.
  • 5Xia W J,Wu Z M. A hybrid particle swarm optimization approach for the job-shop scheduling problem[J].Intermational Journal of Advanced Manufacturing Technology,2006.360-366.
  • 6Xia W J,Wu Z M. An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems[J].COMPUTERS & INDUSTRIAL ENGINEERING,2005.409-425.
  • 7张长胜,孙吉贵,欧阳丹彤,张永刚.求解车间调度问题的自适应混合粒子群算法[J].计算机学报,2009,32(11):2137-2146. 被引量:25
  • 8刘志雄.基于演化策略算法的置换流水车间调度优化研究[J].计算机应用与软件,2010,27(11):35-36. 被引量:1
  • 9Blum C,Sampels M. An ant colony optimization algorithm for shop scheduling problems[J].J Mathematical Modelling and Algorithms,2004.285-308.
  • 10周鹏.求解置换流水车间调度问题的混合蚁群算法[J].计算机工程与应用,2009,45(17):191-193. 被引量:6

二级参考文献35

  • 1周驰,高亮,高海兵.基于PSO的置换流水车间调度算法[J].电子学报,2006,34(11):2008-2011. 被引量:24
  • 2冯春,黄洪钟.一种新的优化搜索算法——进化策略[J].机械科学与技术,1997,16(3):398-401. 被引量:3
  • 3Stutzle T.An ant approach for the flow shop problem[C]//Aachen: Proceedings of the sixth European Congress on intelligent Techniques and Soft Computing,1998,3:1560-1564.
  • 4Ying K C,Liao C J.An ant colony system for permutation flowshop sequencing[J].Computers & Operations Research, 2004,31 (5) : 791-801.
  • 5Rajendran C,Ziegler H.Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs[J].European Journal of Operational Research, 2004,155(2) :426-438.
  • 6Cordon O,de Viana,Herrera F,et al.Analysis of the best-worst ant system and its variants on the TSP[J].Mathware and Soft computing, 2002,9 ( 2-3 ) : 177-192.
  • 7GAREY E L, JOHNSON D S, SETHI R. The complexity of flow-shop and Job Shop scheduling[J]. Mathematics of Operations Research,1976,1(1):117-129.
  • 8KENNEDY J, EBERHART R C. Particle swarm optimization [C]//Proceedings of International Conference on Neural Networks. Piscataway, N.J. ,USA:IEEE Press,1995:1942-1948.
  • 9KENNEDY J,EBERHART R C. A discrete binary version of the particle swarm algorithm[C]//Proceedings of 1997 Conference on Systems, Man, and Cybernetics. Washington, D. C. , USA:IEEE, 1997,5:4104-4108.
  • 10LIAO C J, TSENG C T, LUARN P. A discrete version of particle swarm optimization for flowshop scheduling problems[J]. Computers & Operations Research, 2007,34 (10) : 3099-3111.

共引文献40

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部