期刊文献+

葡萄糖激酶调节蛋白基因rs780094多态性与儿童青少年血脂关系的研究 被引量:1

Association between rs780094 polymorphism in GCKR and plasma lipid levels in children and adolescents
原文传递
导出
摘要 目的:探讨葡萄糖激酶调节蛋白(GCKR)基因rs780094的多态性与儿童青少年血脂水平的关系。方法选取1026名7~18岁中小学生为研究对象。由专职人员记录学生一般情况和既往病史,检测身高、体重,并采集清晨空腹肘静脉血,测定血清TC、TG、HDL-C和LDL-C水平。利用基质支持的激光释放/电离飞行时间质谱分析(MALDI-TOF MS)进行GCKR基因rs780094位点的基因型检测。采用多元线性回归和多元logistic回归分析基因多态性与血脂水平的关系。结果调整年龄、年龄的平方和性别,GCKR基因rs780094多态性A等位基因与TC、TG和LDL-C的水平增加存在相关性(b=0.06 mmol/L,P=0.037;b=0.09 mmol/L,P<0.001;b=0.05 mmol/L,P=0.040);rs780094多态性与TG、LDL-C异常也存在相关性(OR=1.60,95%CI:1.30~1.97,P<0.001;OR=1.35,95%CI:1.02~1.80,P=0.036)。结论 GCKR基因rs780094位点的多态性与儿童青少年血脂水平有关,A等位基因可能是血脂增高的遗传因素。 Objective To investigate the association between rs780094 polymorphism in glucokinase regulatory protein (GCKR) and plasma lipid levels in children and adolescents. Methods 1 026 Chinese children aged 7 to 18 years were recruited,with anthropometric measurements,detection of plasma lipid levels and genotyping of rs780094 performed. Relationships between polymorphism and plasma lipid levels were tested,using multivariate linear regression and logistic regression. Results A-allele of rs780094 in GCKR was associated with increased TC,TG and LDL-C levels(b=0.06 mmol/L,P=0.037;b=0.09 mmol/L,P〈0.001;b=0.05 mmol/L,P=0.040) under the additive model adjusted for age,age square and gender. The rs780094 in GCKR was also associated with abnormal levels of TG and LDL-C(OR=1.60,95%CI:1.30-1.97,P〈0.001;OR=1.35,95%CI:1.02-1.80,P=0.036). Conclusion The rs780094 in GCKR was associated with plasma lipid levels in children and adolescents while A-allele of rs780094 might serve as genetic factor for the increased plasma lipid levels.
出处 《中华流行病学杂志》 CAS CSCD 北大核心 2014年第6期626-629,共4页 Chinese Journal of Epidemiology
基金 国家自然科学基金(81172683);国家重点基础研究发展计划(973)项目(2012CB517501)
关键词 血脂 葡萄糖激酶调节蛋白 基因多态性 儿童 Plasma lipid Glucokinase regulatory protein Gene polymorphism Child
  • 相关文献

参考文献25

  • 1Van Schaftingen E.A protein from rat liver confers to glucokinase the property of being antagonistically regulated by fructose 6-phosphate and fructose 1-phosphate[J].Eur J Biochem,1989,179(1):179-184.
  • 2方亦斌,邹大进.葡萄糖激酶调节蛋白的研究进展[J].华夏医学,2003,16(3):422-423. 被引量:4
  • 3Vionnet N,Stoffel M,Takeda J,et al.Nonsense mutation in the glucokinase gene causes early-onset non-insulindependent-diabetes mellitus [ J ].Nature,1992,356(6371):721-722.
  • 4Wang J,Liu S,Wang B,et al.Association between gout and polymorphisms in GCKR in male Han Chinese [J].Hum Genet,2012,131(7):1261-1265.
  • 5Speliotes EK,Yerges-Armstrong LM,Wu J,et al.Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits [ J ].PLoS Genet,2011,7(3):e 1001324.
  • 6Saxena R,Voight BF,Lyssenko V,et al.Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels [J].Science,2007,316(5829):1331-1336.
  • 7Ling Y,Li X,Gu Q,et al.Associations of common polymorphisms in GCKR with type 2 diabetes and related traits in a Han Chinese population:a case-control study [ J ].BMC Med Genet,2011,12:66.
  • 8Tam CH,Ma RC,So WY,et al.Interaction effect of genetic polymorphisms in glucokinase(GCK)and glucokinase regulatory protein(GCKR)on metabolic traits in healthy Chinese adults and adolescents [ J ].Diabetes,2009,58(3):765-769.
  • 9National Cholesterol Education Program(NCEP):highlights of the report of the Expert Panel on Blood Cholesterol Levels in Children and Adolescents [ J ].Pediatrics,1992,89(3):495-501.
  • 10中国肥胖问题工作组,季成叶.中国学龄儿童青少年超重、肥胖筛查体重指数值分类标准[J].中华流行病学杂志,2004,25(2):97-102. 被引量:2013

二级参考文献29

  • 1[1]Vionnet N, Stoffel M, Takeda J, et al. Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus[J]. Nature , 1992, 356:721-722.
  • 2[2]Van Schaftingen E. A protein from rat liver confers to glucokinase the property of being antagonistically regulated by fructose 6-phosphate and fructose 1 -phosphate[J].Eur J Bichem, 1989, 179: 179-184.
  • 3[3]Slosberg ED, Desai UJ, Fanelli B, et al. Treatment of type 2 diabetes by adenoviral-mediated overexpression of the glucokinase regulatory protein[J]. Di abetes, 2001, 50(8): 1813-1820.
  • 4[4]Clark DG, Filsell OH, Topping DL, et al. Effects of fructose concentration on carbohydrate metabolism, heat production and substrate cycling in isolated rat hepatocytes[J].Biochem J, 1979, 184: 501-507.
  • 5[5]Elvira Alvarez, Isabel Roncero, Julie A Chowen, et al. Evidence that glucokinase regulatory protein is expressed and interacts with glucokinase in rat brai n[J].J Neurochemistry, 2002, 80(1): 45-53.
  • 6[6]Bennett WS, Steitz TA. Glucose-induced conformational change in yeast hexokinase[J].Proc Natl Acad Sci USA, 1978, 75: 4848-4852.
  • 7[7]Charles RST, Harrison RW, Bell GI. Molecular model of human β-cell glucokinase built by analogy to the crystal structure of yeast hexkinase B[J].Diabet es, 1994, 43: 784-791.
  • 8[8]Van Schaftingen E, Vegia-da-Cunha M, Niculescu L, et al. The regulatory protein of glucokinase[J].Bio Soc Trans, 1997, 25(1): 136-140.
  • 9[9]Maria Veiga-da-Cunha, Van Schaftingen E. Identification of fructose 6-Phosphate- and fructose 1-Phosphate-binding residues in the regulatory protein of g lucokinase[J].J Biol Chem, 2002, 277(10): 8466-8473.
  • 10[10]Fernandez-Novell JM, Castel S, Bellido D, et al. Intrace llular distribution of hepatic glucokinase and glucokinase regulatory protein during the fasted to refed transition in rats[J].FEBS Lett, 1999,459(2): 211-214.

共引文献2015

同被引文献28

  • 1Fan JG. Epidemiology of alcoholic and nonalcoholic fatty liver disease in China[J]. J Gastroenterol Hepatol,2013,28:1l-17.
  • 2Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research, Saxena R, Voight BF, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels[J]. Science,2007,316: 1331-1336.
  • 3Wang J, Liu S, Wang B, et al. Association between gout and polymorphisms in GCKR in male Han Chinese[J]. Hum Genet,2012,131:1261-1265.
  • 4Kottgen A, Pattaro C, Boger CA, et al. Multiple New Loci Associated with Kidney Function and Chronic Kidney Disease: The CKD Gen consortium[J]. Nat Genet,2010,42:376-384.
  • 5Speliotes EK, Yerges-Armstrong LM, Wu J, et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits[J]. PLoS Genet,2011,7:eI001324.
  • 6Van Schaftingen E. A protein from rat liver confers to glucokinase the property of being antagonistically regulated by fructose 6-phosphate and fructose l-phosphate[J]. Eur J Bichem,1989,179:179-184.
  • 7Alvarez E, Roncero I, Chowen JA, et al. Evidence that glucokinase regulatory protein is expressed and interacts with glucokinase in rat brain[J]. J Neurochem,2002,80:45-53.
  • 8Saker PJ, Hattersley AT, Barrow B, et al. High prevalence of a missense mutation of the glucokinase gene in gestational diabetic patients due to a founder-effect in a local population[J]. Diabetologia, 1996,39: 1325-1328.
  • 9De la Iglesia N, Mukhtar M, Seoane J, et al. The role of the regulatory protein of glucokinase in the glucose sensory mechanism of tiie hepatocyte [J]. J Biol Chem,2000,275:10597-10603.
  • 10Comuzzie AG, HixsonJE, Almasy L, et al. A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2[J]. Nature Genetics,1997,15:273-276.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部