摘要
通过构造广义计数函数N(φ),α(w),研究了加权Bergman空间A2a(D)上的Rudin正交性问题.证明了(φ):D→D解析,(φ)(0)=0时,{(φ)k:k=0,1,2,…}构成加权Bergman空间Aα2(D)的正交集当且仅当函数Nφ(φ)α(w)=∑(φ)(z)∞∑n=1(1-|z|2)n+α+1是本性径向的;当解析函数(φ)为n阶有限Blaschke乘积且(φ)(0)=0时,若存在正整数N使得∑| z | 2N/φ(φ)α(w)是本性径向的,则(φ)=czn,其中c为常数.
In this paper, The writers study Rudin orthogonality problem on the weighted Bergman space A2a(D) by constructing a generalized Nevanlinna counting function Nφ(φ)α(w), and show that if a self-map φ: D→Dis analytic withφ(O) = O, then the set {(φ)k:k=0,1,2,…} is orthogonal in A2a(D) if and only if Nφ(φ)α(w) is essentially radial, and show that when φ is a finite Blaschke product with order n, and φ(O) = O, if there exits a positive integer N subjecting the function ∑| z | 2N/φ(φ)α(w) to be essentially radial, then , φ)=czn where c is some constant.
出处
《嘉兴学院学报》
2014年第3期34-41,共8页
Journal of Jiaxing University
基金
浙江省自然科学基金资助项目(Y6110824)
国家自然科学基金资助项目(10371051)
关键词
加权BERGMAN空间
Rudin正交
广义计数函数
正交函数
Weighted Bergman spaces Rudin orthogonality
generalized Nevanlinna counting function
or-thogonal functions