期刊文献+

乙二醇基纳米流体黏度的实验研究 被引量:6

Relative viscosity of ethylene glycol-based nanofluids
下载PDF
导出
摘要 实验研究了3种乙二醇基纳米流体(Al2O3-EG、ZnO-EG、CuO-EG)在不同质量分数(0.5%/3.0%/5.0%/7.0%)下的相对黏度随温度的变化规律,实验所用乙二醇基纳米流体采用两步法配制获得。结果表明:在30~60℃温度范围内乙二醇基纳米流体的相对黏度同温度之间并无较强的函数关系(单调递增或递减);但在质量分数较高时,3种乙二醇基纳米流体的相对黏度随温度的变化会出现波动,且以非球形颗粒的ZnO乙二醇基纳米流体的波动最为显著;乙二醇基纳米流体的相对黏度均随纳米颗粒体积分数的增大而增大,其中CuO乙二醇基纳米流体相对黏度的增长速度最快,Al2O3乙二醇基纳米流体的增长速度最慢。最后比较分析了文献中相对黏度预测公式与本文实验数据的相符程度。 An experimental study was carried out on the viscosity of ethylene glycol (EG) - based nanofluids containing Al2O3, ZnO and CuO nanoparticles with the particle concentrations of 0.5%/3.0%/5.0%/7.0%(mass), respectively. Nanofluid samples were prepared by the two-step method without adding surfactant. The relative viscosity of EG-based nanofluids was not a strong monotonous function of temperature within 30-60℃. Nevertheless, the relative viscosity of EG-based nanofluids fluctuated with increasing temperature when mass fraction was high enough, with the fluctuation of ZnO (elongated)-EG nanofluid being more significant. It was also found that the relative viscosity of all the nanofluids tested increased with increasing volume fraction. Among them, CuO-EG increased most intensely while Al2O3-EG increased most moderately. Finally, a comparison analysis was made between the present experimental data and the prediction equations in literature.
出处 《化工学报》 EI CAS CSCD 北大核心 2014年第6期2021-2026,共6页 CIESC Journal
基金 国家自然科学基金项目(51376130 50925624) 国家重点基础研究发展计划项目(2012CB720404) 上海科委基础研究重点项目(12JC1405100) 教育部博士点基金项目(20110073110037)~~
关键词 纳米流体 纳米粒子 黏度 乙二醇 波动 nanofluids nanoparticles viscosity ethylene glycol fluctuation
  • 相关文献

参考文献18

  • 1Murshed S M S,Leong K C,Yang C. Investigations of thermal conductivity and viscosity of nanofluids[J].International Journal of Thermal Sciences,2008,(05):560-568.
  • 2Mahbubul I M,Saidur R,Amalina M A. Latest developments on the viscosity of nanofluids[J].International Journal of Heat and Mass Transfer,2012,(04):874-885.
  • 3Nguyen C T,Desgranges F,Roy G,Galanis N Maré T Boucher S Angue Mintsa H. Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon[J].International Journal of Heat and Fluid Flow,2007,(06):1492-1506.
  • 4Lu W Q,Fan Q M. Study for the particle's scale effect on some thermophysical properties of nanofluids by a simplified molecular dynamics method[J].Engineering Analysis with Boundary Elements,2008,(04):282-289.
  • 5Anoop K B,Sundararajan T,Das S K. Effect of particle size on the convective heat transfer in nanofluid in the developing region[J].International Journal of Heat and Mass Transfer,2009,(09):2189-2195.
  • 6Kole M,Dey T K. Viscosity of alumina nanoparticles dispersed in car engine coolant[J].Experimental Thermal and Fluid Science,2010,(06):677-683.
  • 7凌智勇,孙东健,张忠强,丁建宁,程广贵,钱龙,张睿.温度和颗粒浓度对纳米流体粘度的影响[J].功能材料,2013,44(1):92-95. 被引量:13
  • 8Prasher R,Song D,Wang J,Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications[J].Applied Physics Letters,2006,(13):133108.
  • 9Chen H,Ding Y,He Y,Tan C. Rheological behaviour of ethylene glycol based titania nanofluids[J].Chemical Physics Letters,2007,(04):333-337.
  • 10Yu W,Xie H,Chen L,Li Y. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid[J].Thermochimica Acta,2009,(01):92-96.

二级参考文献8

共引文献30

同被引文献52

  • 1李国龙,吴勘,谭镜明.纳米TiO_2在水基体系中分散的研究[J].现代涂料与涂装,2006,9(11):31-34. 被引量:3
  • 2王向东,张跃,王树彬,周武平,熊宁,林同伟.碳化钛悬浮体分散特性和流变性能的研究[J].稀有金属材料与工程,2007,36(A01):153-155. 被引量:5
  • 3林治鸣,彭峰,黄辉俊,余皓,王红娟.纳米二氧化钛粉体水基体系分散稳定性评价研究[J].功能材料,2007,38(A06):2099-2102. 被引量:6
  • 4蔡艳华,马冬梅,王金刚,俞海军,朱根华.纳米流体的制备及传热性能研究的现状[J].材料研究与应用,2007,1(4):274-276. 被引量:4
  • 5Bakhsheshi-Rad H R,Hamzah E,Daroonparvar M,et al.Synthesis and biodegradation evaluation of nano-Si and nano-Si/TiO2 coatings on biodegradable Mg-Ca alloy in simulated body fluid[J].Ceramics International,2014,40(9):14009-14018.
  • 6Hariharan C.Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles:Revisited[J].Applied Catalysis A; General,2006,304:55-61.
  • 7Pastoriza-Gallego M J,Casanova C,Legido J L,et al.CuO in water nanofluid:Influence of particle size and polydispersity on volumetric behaviour and viscosity[J].Fluid Phase Equilibria,2011,300( 1-2):188-196.
  • 8Murshed S,Leong K, Yang C. Investigations of thermal conducti- vity and viscosity of nanofluids [ J ]. International Journal of Ther- mal Sciences ,2008,47 (5) :60 -68.
  • 9Rohini P K, Suganthi K S, Rajan K S. Transport properties of ul- tra-low concentration CuO-water nanofluids containing non-sphe- rical nanoparticles [ J ]. International Journal of Heat and Mass Transfer,2012,55 ( 17 ) :4734 --4743.
  • 10Hachey M A, Nguyen C T, Galanis N, et al. Experimental investi- gation of A1203 nanofluids thermal properties and rheology- Effects of transient and steady-state heat exposure [ J ]. Interna- tional Journal of Thermal Sciences,2014,76 : 155 --167.

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部