摘要
纸币自动清分可以有效提高银行的工作效率,基于图像处理技术的纸币自动清分系统的识别准确率对于纸币自动清分系统非常关键.基于机器视觉知识与模式识别的理论,并结合纸质人民币的图像特点,提出了纸质人民币序列号图像识别处理算法、"奖惩"机制下的线性传感算法和序列号区域特征提取方法.对纸币图像进行倾斜校正、局部特点提取、灰度增强和图像分块等处理后,将上述方法运用于采用CIS传感器的纸币图像处理系统中.实验证明,该方法具有较高的识别准确率,取得了理想的纸币自动清分效果.
Banknotes automatic sorting system can effectively improve work efficiency of a bank ,for auto‐matic banknote processing system ,recognition accuracy of banknotes automatic sorting system based on image processing technology is critical .Based on theoretical knowledge of machine vision and pattern rec‐ognition ,and combined with the features of RMB ,paper currency recognition based on image processing method ,based on the“rewards”feature extraction algorithm of linear sensor mechanism and serial number module method are proposed .After tilt correction ,local feature extraction ,gray enhancement and image block of banknotes image ,the above method is applied to an image processing system based on CIS sensor , experimental results show that the method has a high recognition accuracy ,achieves the desired effect of automatic banknotes sorting .
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第5期81-87,共7页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
图像处理
纸币清分
序列号识别
线性感知算法
CIS传感器
image processing
paper currency classification
serial number identification
linear perception algorithm
CIS sensor