期刊文献+

基于流形学习的整体正交稀疏保留鉴别分析 被引量:1

Analysis of Preserving Discriminant of Holistic Orthogonal Sparsity Based on Manifold Learning
下载PDF
导出
摘要 稀疏保留投影是一种有效的特征提取方法,但是其主要关注样本间的全局稀疏重构关系,并且得到的投影变换通常不是正交的。在实际应用中,图像数据往往处于高维空间中的一种低维流形中,正交性一直被认为有利于提高鉴别能力。文中以有监督学习的方式在稀疏保留投影中引入了流形结构保留,并使得投影空间正交,从而提出了一种新的特征提取方法,即基于流形学习的整体正交稀疏保留鉴别分析(MLHOSDA)。在人脸和掌纹图像数据库的实验结果表明此方法具有较好的识别效果。 Sparsity Preserving Projections( SPP) is an effective feature extraction method.However,it focuses on the global sparse reconstruction relations among samples,and its achieved transformation is usually not orthogonal.In real application,image samples possibly reside on a nonlinear submanifold of the high-dimensional space,which is the inherent structure among the samples,and orthogonality is favorable for classification in many scenarios.In this paper,propose a new feature extraction approach named Manifold Learning based Holistic Orthogonal Sparsity preserving Discriminant Analysis( MLHOSDA),which introduces the manifold preserving into SPP in a supervised learning manner and makes the obtained transformation orthogonal.The experiment results on face and palmprint image databases demonstrate the effectiveness of the proposed approach.
出处 《计算机技术与发展》 2014年第6期63-66,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(61073113 61272273) 江苏省普通高校研究生科研创新计划(CXLX13_465) 江苏省333工程(BRA2011175)
关键词 特征提取 流形学习 稀疏保留投影 有监督学习 整体正交 人脸和掌纹图像 feature extraction manifold learning sparsity preserving projections supervised learning holistic orthogonal face and palmprint image
  • 相关文献

参考文献14

  • 1尹飞,冯大政.基于PCA算法的人脸识别[J].计算机技术与发展,2008,18(10):31-33. 被引量:42
  • 2王李冬.一种新的人脸识别算法[J].计算机技术与发展,2009,19(5):147-149. 被引量:12
  • 3岳峰,左旺孟,张大鹏.掌纹识别算法综述[J].自动化学报,2010,36(3):353-365. 被引量:64
  • 4Turk M, Pentland A. Eigenfaces for recognition [ J ]. Journal of Cognitive Neuroscience, 1991,3 ( 1 ) :71-86.
  • 5Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection [J]. IEEE Trans on Pattern Analysis and Machine Intelli- gence, 1997,19 (7) :711-720.
  • 6Foley D H, Sammon J W. An optimal set of discriminant vec- tom[J]. IEEE Trans on Computers, 1975, C-24 (3) :281 - 289.
  • 7Rowels S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science,2000,290(5500) :2323 -2326.
  • 8He Xiaofei, Yan Shuicheng, Hu Yuxiao, et al. Face recognition using Laplacianfaces[ J]. IEEE Trans on Pattem Analysis and Machine Intelligence ,2005,27 ( 3 ) :328-340.
  • 9Wang Ruiping, Chen Xilin. Manifold discriminant analysis [ C]//Proceedings of IEEE conf on computer vision and pat- tern recognition. Miami, FL: IEEE,2009:429-436.
  • 10Zhang Tianhao, Huang Kaiqi, Li Xuelong, et al. Discriminative orthogonal neighborhood-preserving projections for classifica- tion[J]. IEEE Trans on Systems, Man and Cybernetics, Part B ,2010,40( 1 ) :253-263.

二级参考文献24

共引文献109

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部